микроконтроллеры в системах управления современных автомобилей

antique car 4435361 1920

ATMEL: микроконтроллеры для автопрома

Для применения в автомобильной промышленности ATMEL выпускает высокотемпературные версии контроллеров. На рис. 1 представлена информация о выпускаемых и готовящихся к выпуску «автомобильных» AVR–контроллерах.

Следует отметить, что это не «отобранные» стандартные кристаллы, а микросхемы с вновь разработанной топологией. Первыми «автомобильными» AVR–контроллерами c диапазоном рабочих температур –40…+125 °C стали ATtiny45 и ATmega88. В настоящее время выпускается более 10 типов контроллеров, а вышеназванные — доступны в исполнении до +150 °C. Теперь эти микросхемы можно размещать в автоматических коробках передач и непосредственно на двигателе для обработки информации от датчиков и управления впрыском. Все «автомобильные» AVRмикроконтроллеры соответствуют стандарту
ISO–TS–16949 и прошли сертификационные испытания по нормам AEC–Q100.

16 1 1

ATMEL выпускает четыре градации «автомобильных» AVR–контроллеров, отличающиеся максимальной рабочей температурой:

Основные параметры микросхем приведены в таблице.

Название Статус Flash, кбайт EEPROM, байт SRAM, байт Число вх./вых. Интерфейс LIN Интерфейс UART/USART Интерфейс USI Интерфейс SPI Таймеры, 8 бит Таймеры, 12/16 бит Каналы ШИМ Число входов АЦП Макс. частота, МГц Тип корпуса Температурный диапазон, °C
ATtiny24 P 2 128 128 12 S 1 USI 1 1 4 8 16 MLF20/SOIC14 –40…+125
ATtiny25 P 2 128 128 6 S 1 USI 2 4 4 16 MLF20/SOIC8 –40…+125
ATtiny44 I 4 256 256 12 S 1 USI 1 1 4 8 16 MLF20/SOIC14 –40…+125
ATtiny45 P 4 256 256 6 S 1 USI 2 4 4 16 MLF20/SOIC8 –40…+125
ATtiny84 P 8 512 512 12 S 1 USI 1 1 4 8 16 MLF20/SOIC8 –40…+125
ATtiny85 P 8 512 512 6 S 1 USI 2 4 4 16 MLF20/SOIC8 –40…+125
ATmega48 P 4 256 512 23 S 1 1+USART 2 1 6 8 16 TQFP/MLF32 –40…+125
ATmega88 P 8 512 1K 23 S 1 1+USART 2 1 6 8 16 TQFP/MLF32 –40…+150
ATmega164P P 16 512 1K 32 S 2 1+USART 2 1 6 8 16 TQFP/MLF44 –40…+125
ATmega168 P 16 512 1K 23 S 1 1+USART 2 1 6 8 16 TQFP/MLF32 –40…+150
ATmega324P P 32 1K 2K 32 S 2 1+USART 2 1 6 8 16 TQFP/MLF44 –40…+125
ATmega328P I 32 1K 2K 23 — 1 1+USART 2 1 6 8 16 TQFP/MLF32 –40…+125
ATmega644P P 64 2K 4K 32 S 2 1+USART 2 1 6 8 16 TQFP/MLF44 –40…+125
ATmega16M1 I 16 1K 2K 32 H 1 1 1 1 6+4 11 16 TQFP/QFN32 –40…+150
ATmega32C1 I 32 1K 2K 32 H 1 1 1 1 4 11 16 TQFP/QFN32 –40…+150
ATmega32M1 I 32 1K 2K 32 H 1 1 1 1 6+4 11 16 TQFP/QFN32 –40…+150
ATmega64C1 I 64 2K 4K 32 H 1 1 1 1 4 11 16 TQFP/QFN32 –40…+150
ATmega64M1 I 64 2K 4K 32 H 1 1 1 1 6+4 11 16 TQFP/QFN32 –40…+150
ATmega169P I 16 512 1K 54 — 1 1+USI 2 1 4 8 16 TQFP/QFN64 –40…+125
AT90CAN32 P 32 1K 2K 53 S 2 1 2 2 6+2 8 16 TQFP/MLF64 –40…+125
AT90CAN64 P 64 2K 4K 53 S 2 1 2 2 6+2 8 16 TQFP/MLF64 –40…+125
AT90CAN128 P 128 4K 4K 53 S 2 1 2 2 6+2 8 16 TQFP/MLF64 –40…+125

Изготовители современных автомобилей добавляют в свои новые модели различные электронные системы для повышения удобства и безопасности эксплуатации. Каждая такая система управляется микроконтроллером, который принимает и обрабатывает информацию от датчиков и выдает команды на соответствующие двигатели и соленоиды. Эти периферийные контроллеры связаны с центральным компьютером посредством бортовой сети. Наиболее распространенной бортовой сетью является CAN (Controller Area Network). На самом деле, в автомобиле приходится использовать две сети, первую для обслуживания ответственных узлов, таких как антиблокировочная система или подушки безопасности, и вторую для работы с сервисными системами — климат–контролем или освещением в салоне. Использование высокоскоростной шины CAN, поддерживающей режим multi–master, во втором случае не является оптимальным решением. Здесь находит применение шина LIN (Local Interconnect Network).

Микроконтроллеры с шиной CAN ATMEL выпускает практически во всех сериях — AT89, AT90, AT91, также запланирован выпуск CAN–контроллера в серии AVR32. Первые AVR–микроконтроллеры с шиной CAN — это AT90CAN128. Они имеют на кристалле Flash–память объемом 128 кбайт, оперативную память 4 кбайта, а также богатый набор цифровой и аналоговой периферии. Внешняя шина адреса/данных позволяет подключать к контроллеру дополнительные устройства, а также увеличивать объем оперативной памяти. Позднее ATMEL выпустила еще два контроллера, имеющие такой же корпус, но меньший объем памяти.

LIN — дешевая низкоскоростная шина (скорость 20 кбит/с), использующая для межсоединений однопроводную линию связи. Микроконтроллеры с шиной LIN появились в линейке продукции ATMEL сравнительно недавно. Это объясняется тем, что обмен по шине LIN в AVR–микроконтроллерах можно организовать, используя интерфейс UART или USI и внешний LIN–трансивер ATA6660 или ATA6662. Структурная схема представлена на рис. 2.

16 2 1

В современном автомобиле многие устройства могут управляться по интерфейсу LIN. Ниже — неполный перечень:

Стратегия ATMEL в области применения LIN–интерфейса — выпуск микросхем повышенной степени интеграции, причем как со стороны Master–устройства, так и со стороны Slave–устройств. На рис. 3 в графическом виде показана тенденция к увеличению степени интеграции периферийных LIN–микросхем.

16 3

Из диаграммы видно, что старшие микросхемы — ATA6823/33/34, системные базовые кристаллы (LIN System Basic Chip, SBC) включают даже драйвер для прямого управления внешними полевыми транзисторами.

На основе кристалла SBC, микросхемы ATA6624 и кристалла AVR–микроконтроллера ATmega88/168 ATMEL выпустила микросхему класса «система–в–корпусе» (System–In–Package, SIP) — ATA6612/6613. Эта микросхема упакована в корпус QFN48 и представляет собой компактное законченное однокристальное решение для создания типового LIN–узла.

Структурная схема ATA6612/13 представлена на рис. 4.

16 4

В 2008 году ATMEL выпустила новую группу контроллеров для автомобильного применения — ATmega32M1/ATmega32С1. Эти контроллеры наряду с интерфейсом CAN имеют аппаратный LIN–интерфейс, что позволяет использовать их в системах управления моторами по интерфейсу CAN и LIN. Микросхема ATmega32M1 интересна тем, что содержит многоканальный ШИМ–контроллер с тремя парами комплементарных выходов, а это позволяет непосредственно управлять трехканальным драйвером трехфазного бесколлекторного двигателя постоянного тока, например ATA6834. На рис. 5 показана схема построения системы управления бесколлекторным двигателем постоянного тока на основе ATmega32M1 и ATA6834.

16 5

Типовые применения ATmega32M1 включают практически все автомобильные системы с электромоторами — вентиляторы охлаждения двигателя, вентилятор кондиционера, бензонасосы, масляные насосы, управление положением сидений, управление стеклоподъемниками и люком.

Не остаются в стороне от автомобильных приложений и 32–разрядные AVR–микроконтроллеры. Один из уже выпускаемых контроллеров, AT32UC3A0512 — прошел сертификацию для автоприменений, и целая линейка AVR32–контроллеров готовится к проведению сертификации. На рис. 6 представлена информация о выпускаемых и готовящихся к выпуску «автомобильных» контроллерах AVR32 семейств UC3A и UC3B.

16 6

Таким образом, корпорация ATMEL предлагает весьма широкий выбор электронных компонентов для использования в экстремальных условиях, в частности, в автомобильных применениях. На смену выпускающимся в течение долгого времени 4–разрядным микроконтроллерам MARC4 приходят более скоростные и высокоинтегрированные 8– и 32–разрядные кристаллы и модули. Наращивание номенклатуры «автомобильных» контроллеров подтверждает серьезность намерений ATMEL расширить свои позиции на мировом рынке автомобильной электроники.

Источник

Микроконтроллеры в системах промышленной автоматизации

В статье рассматривается роль микроконтроллеров (МК) в системах промышленной автоматизации, в частности, речь пойдет о том, как на базе микроконтроллеров реализуется интерфейс реального мира для различного типа датчиков и исполнительных механизмов. Также мы обсудим необходимость интеграции в микроконтроллеры высокопроизводительных ядер, таких как ARM Cortex-M3, с прецизионной и специализированной периферией, которой снабжены микроконтроллеры серии ADuCM360 компании Analog Devices и семейства EFM32 компании Energy Micro (Silicon Labs). Также не останется без внимания относительно новый протокол обмена данными, который ориентирован на эту область приложений, с конкретной ссылкой на бюджетные микроконтроллеры семейства XC800/XC16x (Infineon) и MSP430F2274 (Texas Instruments), и на специализированные приемопередатчики, включая MAX14821 (Maxim).

Traco 728%D1%8590 webinar

Микроконтроллеры интегрируют в себе технические возможности для обработки смешанных сигналов и вычислительную мощность, при этом уровень производительности МК и их функционал постоянно растет. Однако существуют другие разработки, которые позволяют продлить жизненный цикл бюджетных и низкопроизводительных микроконтроллеров.

По определению, микроконтроллеры бесполезны без связи с «реальным миром». Они были разработаны, чтобы действовать в качестве концентраторов для входов и выходов, выполняя задачи условных переходов и управляя последовательными и параллельными процессами. Их роль определяется управлением, в то время как возможность программирования означает, что характер управления задается логикой. Тем не менее, они изначально разрабатывались с целью получить интерфейс для аналогового мира, и, следовательно, в своей работе микроконтроллеры существенно опираются на процесс аналого-цифрового преобразования. Часто это цифровое представление аналогового параметра, обычно получаемого от какого-то датчика, на основе которого строится процесс управления, и основное применение микроконтроллера в таком случае видится в системах автоматизации. Способность управлять большими и сложными механическими системами, используя миниатюрный и относительно дешевый «кусочек» кремния, способствовало тому, что микроконтроллеры стали самым важным элементом промышленных систем автоматизации, и не удивительно, что многие производители стали выпускать специализированные семейства микроконтроллеров.

Прецизионная работа

По соображениям коммерческой необходимости предполагается, что процесс преобразования данных, как ключевая функция микроконтроллеров, должен быть экономически эффективно внедрен в микроконтроллер, что приводит к повышению уровня интеграции функционала для обработки смешанных сигналов. Кроме того, рост уровня интеграции способствует увеличению нагрузки на ядро.

Низкая стоимость и гибкость функционала микроконтроллеров означает широкое применение микроконтроллеров в различных приложениях, но производители в настоящее время стремятся к объединению множества функций в одном микроконтроллере по соображениям экономической эффективности, сложности или безопасности. Где когда-то, возможно, использовались десятки микроконтроллеров, сейчас потребуется только один.

Поэтому неудивительно, что то, что начиналось с 4-разрядных устройств, теперь превратилось в очень сложные и мощные 32-разрядные процессорные ядра, а ядро ARM Cortex-M стало выбором многих производителей.

Совместить высокопроизводительное процессорное ядро с прецизионным и стабильным аналоговым функционалом – непростая задача. Технология КМОП идеальна для высокоскоростных цифровых схем, но с реализацией чувствительной аналоговой периферии могут быть проблемы. Одной из компаний, имеющей огромнейший опыт в этой области, является Analog Devices. Разработанное компанией семейство полностью интегрированных систем сбора данных ADuCM предназначено для непосредственного взаимодействия с прецизионными аналоговыми датчиками. При таком подходе не только уменьшается количество внешних компонентов, но и гарантируется точность преобразования и измерений.

Преобразователь, интегрированный, например, в систему ADuCM360 с ядром ARM Cortex-M3, представляет собой 24-разрядный сигма-дельта АЦП, являющийся частью аналоговой подсистемы. В указанную систему сбора данных интегрированы программируемые источники тока возбуждения и генератор напряжения смещения, но более важной частью являются встроенные фильтры (один из которых используется для прецизионных измерений, другой – для быстрых измерений), которые применяются для обнаружения больших изменений в исходном сигнале.

Работа с датчиками в режиме «глубокого сна»

Производители микроконтроллеров учитывают важную роль датчиков в системах автоматизации и начинают разрабатывать оптимизированные входные аналоговые схемы, которые обеспечивают специализированный интерфейс для индуктивных, емкостных и резистивных датчиков.

Разработаны даже такие входные аналоговые схемы, которые могут работать автономно, например, интерфейс LESENSE (Low Energy Sensor) в микроконтроллерах с ультранизким энергопотреблением компании Energy Micro (Рисунок 1). В состав интерфейса входят аналоговые компараторы, ЦАП и контроллер (секвенсер) с низким потреблением, который программируется ядром микроконтроллера, но затем работает автономно, в то время как основная часть устройства находится в режиме «глубокого сна».

LESENSE
Рисунок 1. Технология LESENSE, интегрированная в микроконтроллеры EFM32, подразумевает автономную работу интерфейса датчиков в системах промышленного контроля и автоматизации.

Контроллер интерфейса LESENSE работает от источника тактовой частоты 32 кГц и управляет его активностью, в то время как выходы компаратора могут быть сконфигурированы как источники прерываний для «пробуждения» процессора, а ЦАП может быть выбран в качестве источника опорного сигнала компаратора. Технология LESENSE также включает в себя программируемый декодер, который можно настроить на генерирование сигнала прерывания только при выполнении условий нескольких датчиков в одно время. Компания Digi-Key предлагает стартовый набор EFM32 Tiny Gecko Starter Kit, в состав которого входит демонстрационный проект LESENSE. Микроконтроллеры семейства Tiny Gecko выполнены на ядре ARM Cortex-M3 с рабочей частотой до 32 МГц и нацелены на применение в системах промышленной автоматизации, где требуется измерение температуры, вибрации, давления и регистрация движений.

efm32tinygeckostarterkit
Рисунок 2. Стартовый набор EFM32 Tiny Gecko Starter Kit позволит полностью оценить возможности микроконтроллеров семейства Tiny Gecko.

Протокол IO-Link

Внедрение нового мощного интерфейса датчиков и исполнительных механизмов помогает многим производителям продлить жизненный цикл своих 8- и 16-разрядных микроконтроллеров на арене промышленных систем автоматизации. Этот протокол интерфейса передачи данных получил название IO-Link и уже поддерживается лидерами в секторе промышленной автоматизации и, в частности, производителями микроконтроллеров.

Передача данных по протоколу IO-Link осуществляется по 3-проводному неэкранированному кабелю на расстояния до 20 метров, что позволяет внедрить интеллектуальные датчики и исполнительные механизмы в существующие системы. Протокол подразумевает, что каждый датчик или исполнительный механизм является «интеллектуальным», другими словами каждая точка выполнена на микроконтроллере, но сам протокол очень простой, поэтому для этих целей вполне будет достаточно 8-разрядного микроконтроллера, и это именно то, что используется в настоящее время многими производителями.

Консорциум производителей, использующих IO-Link, считает, что можно значительно снизить сложность систем, а также ввести дополнительные полезные функции, например, диагностику в реальном времени посредством параметрического мониторинга (Рисунок 3). При интеграции в топологию FieldBus через шлюз (опять же, реализуется на микроконтроллере или программируемом логическом контроллере), сложные системы могут контролироваться и управляться централизованно из диспетчерской. Датчики и исполнительные механизмы можно настроить удаленно, отчасти потому, что датчики по спецификации IO-Link знают о себе намного больше, чем «обычные» датчики.

В первую очередь заметим, что собственный идентификатор (и производителя) и различные настройки встроены в датчик в формате XML и доступны по запросу. Это позволяет системе мгновенно классифицировать датчик и понять его назначение. Но, что более важно, IO-Link позволяет датчикам (и исполнительным механизмам) предоставлять контроллеру данные непрерывно в реальном времени. Фактически, протокол подразумевает обмен тремя типами данных: данные о процессе, сервисные данные и данные о событиях. Данные о процессе передаются циклически, а сервисные данные передаются ациклично и по запросу ведущего контроллера. Сервисные данные могут использоваться при записи/чтении параметров устройства.

IOLink
Рисунок 3. Интерфейс IO-Link предлагает для микроконтроллеров более простой способ обмена данными с интеллектуальными датчиками и исполнительными механизмами, а для разработчиков – возможность создавать интеллектуальные системы автоматизации.

Некоторые производители микроконтроллеров присоединились к консорциуму IO-Link, который недавно стал Техническим Комитетом (TC6) в составе международного сообщества PI (PROFIBUS & PROFINET International). По сути, IO-Link устанавливает стандартизированный метод для контроллеров (включая микроконтроллеры и программируемые логические контроллеры) для идентификации, контроля и обмена данными с датчиками и исполнительными механизмами, которые используют этот протокол. Список производителей IO-Link-совместимых устройств постоянно растет, как и всесторонняя аппаратно-программная поддержка производителей микроконтроллеров.

Часть этой поддержки исходит от компаний специализирующихся на этой области, например, Mesco Engineering – немецкая компания, которая сотрудничает с рядом производителей полупроводниковых приборов с целью разработки решений IO-Link. В списке ее партнеров достаточно крупные и известные компании: Infineon, STMicroelectronics, Atmel и Texas Instruments. Infineon, например, портировала программный стек от Mesco на свои 8-разрядные микроконтроллеры серии XC800, а также оказывает поддержку разработки ведущего устройства IO-Link на базе своих 16-разрядных микроконтроллеров.

Стек, разработанный Mesco, также был портирован на 16-разрядные микроконтроллеры Texas Instruments серии MSP430, в частности, для MSP430F2274.

Производители также уделяют свое внимание разработке дискретных приемопередатчиков интерфейса IO-Link. Например, компания Maxim выпускает микросхему MAX14821, которая реализует интерфейс физического уровня для микроконтроллера, поддержтвающего канальный уровень протокола (Рисунок 4). Два внутренних линейных регулятора вырабатывают общие для датчика и исполнительного механизма напряжения питания 3.3 В и 5 В, подключение к микроконтроллеру для конфигурирования и мониторинга осуществляется по последовательному интерфейсу SPI.

MAX14821 sch
Рисунок 4. Микросхема приемопередатчика MAX14821 предоставляет физический уровень интерфейса IO-Link для микроконтроллера, реализующего канальный уровень интерфейса.

Вполне вероятно, что благодаря простоте реализации и внедрения интерфейса IO-Link, все больше производителей будут интегрировать этот физический уровень с другой специализированной периферией, присутствующей в микроконтроллерах, с целью применения в промышленных системах автоматизации. Компания Renesas уже представила ассортимент специализированных контроллеров IO-Link Master/Slave на основе своих 16-разрядных микроконтроллеров семейства 78К.

Системы промышленной автоматизации всегда зависели от сочетания измерений и управления. В течение последних нескольких лет заметен рост уровня промышленных сетевых коммуникаций и протоколов, однако, интерфейс между цифровой и аналоговой частью системы остался относительно неизменным. С введением интерфейса IO-Link датчики и исполнительные механизмы, разрабатываемые в настоящее время, способны все же взаимодействовать с микроконтроллером в более изощренной форме. Коммуникационный протокол связи типа «точка-точка» обеспечивает не только более простой способ обмена данными для управления элементами системы, но и расширение возможностей бюджетных микроконтроллеров.

Перевод: Vadim по заказу РадиоЛоцман

Источник

Поделиться с друзьями
AvtoPoisk.top - автоподбор с гарантией
0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии