Вопросы и ответы
Что произойдет с модулем при превышении максимального выходного тока?
Из какого материалы изготовлены корпуса модулей питания?
Применяются ли в модулях драгоценные металлы?
Из какого материала изготовлены выводы модулей?
Возможно ли организовать питание потребителя разнополярным напряжением?
Какое назначение вывода Диагностика?
Какие варианты использования функции дистанционного включения существуют?
Допустимо включение и длительная работа модулей без нагрузки (в режиме «холостого хода»)?
Сравнимы ли величины MTBF и гамма-процентная наработка на отказ?
Каким образом можно регулировать выходное напряжение?
Для чего служат выводы СИНХР в модулях питания серий МДМ-Р и МДМ-А?
Как рассчитать примерную площадь поверхности радиатора для модуля электропитания?
Проводились ли испытания модулей на стойкость к пониженному атмосферному давлению (вакуум)?
Какие могут возникнуть проблемы при импульсной нагрузке?
В технических условиях для типовой схемы включения рекомендуется применять совместно с преобразователем такие внешние элементы: дроссели и конденсаторы. Возможно ли обойтись без них?
Какие новинки можно ожидать в ближайшее время?
Таблица нештатных режимов работы
Зачем нужны 2 дросселя в рекомендуемой внешней обвязке высоковольтного модуля питания?
Было замечено, что у модулей фильтрации серии МДМ-Ф БКЯЮ.436630.001ТУ печатная плата со стороны выводов не опаяна по контуру корпуса, а также некоторые выводы не припаяны к отверстиям печатной платы. Считается ли это браковочным признаком?
Сравнимы ли величины MTBF и гамма-процентная наработка на отказ?
По результатам испытани й вычисляется параметр «интенсивность отказов λ ( t )» — это число отказов n(t) элементов продукта в единицу времени, отнесенное к среднему числу элементов Nt продукта, работоспособных к моменту времени t:
Затем, зная интенсивность отказов, можно вычислить MTBF:
γ ( t ) — в ероятность, что продукт будет работать в течение некоторого времени t без отказа.
В свою очередь, гамма-процентная наработка до отказа Тγ определяется как наработка, в течение которой отказ прибора не возникает с вероятностью γ, выраженной в процентах.
Параметры надежности прогнозируют в соответствии с ГОСТ Р 27.301 п.6.7. и рассчитывают в соответствии с ГОСТ Р 27.004. Контроль соответствия требованиям надежности производится квалификационными и периодическими испытаниями.
Значение гамма-процентной наработки до отказа Тγ можно вычислить:
Тогда можно через λ выразить формулу отношения MTBF и Тγ :
Теперь путем подстановки значений Тγ и γ можно рассчитать значения MTBF для модулей электропитания серий МДМ:
MTBF ≈ 3 млн. ч при Тγ = 75000 ч ( γ =97,5%);
MTBF ≈ 2 млн. ч при Тγ = 50000 ч ( γ =97,5%);
MTBF ≈ 0,6 млн. ч при Тγ = 15000 ч ( γ =97,5%)
Согласно п.4.5. технических условий на модули серий МДМ:
Облегченный режим работы: Uвх.=Uном., Pвых.=0,5*Pмакс., Tкорп≤0,5*Ткорп.макс;
Типовой режим работы: Uвх.=Uном., Pвых.=0,7*Pмакс., Tкорп≤0,7*Ткорп.макс;
Предельно-допустимый режим работы: Pвых.=Pмакс., Tкорп≤Ткорп.макс.
Важно! При сравнении двух значений MTBF для разных производителей учитывать при каких климатических условиях проводились испытания, т.к. значение этого параметра для модулей серий МДМ в облегченных и предельно-допустимых температурных режимах отличается в 5 раз. Следует иметь ввиду, что зарубежные производители обычно приводят данное значение испытанное только при НКУ.
Для простоты понимания допустим, что функция зависимости вероятности выхода из строя относительно гарантийного срока зависит по экспоненциальному закону распределения.
Кроме того, согласно ГОСТ 20.39.309 п.10. для изделий ВВСТ допускается ориентироваться только на методики и показатели надежности российских ГОСТ.
Задание для самостоятельного решения
Определить вероятность безотказной работы R объекта за период наблюдения и вероятность появления отказа F объекта, используя исходные данные, приведенные в таблице 1. Результаты расчетов R и F округлить до третьего знака.
Таблица 1 – исходные данные.
Общее количество объектов наблюдения
Количество отказавших объектов
Задание №2 — определение средней наработки на отказ.
На 3 автомобилях в течение года наблюдалось следующее количество отказов двигателей: 2; 3; 2. При этом наработки двигателей за данный период составили соответственно 1800; 2000; 2100 часов. Определить среднюю наработку на отказ автомобиля за год.
Средняя наработка на отказ применяется для восстанавливаемых объектов в качестве показателя надежности и определяется как отношение суммарной наработки машины к числу его отказов в течение этой наработки.
Воспользуемся расчетной формулой для определения средней наработки на отказ для восстанавливаемых объектов:
, где
ti – наработка до первого i-го отказа для невосстанавливаемых объектов или наработка между отказами для восстанавливаемых объектов;
n – количество первых отказов для невосстанавливаемых объектов или количество отказов за суммарную наработку для восстанавливаемых объектов.
Задание для самостоятельного решения
Определить среднюю наработку на отказ автомобиля за год, используя исходные данные, приведенные в таблице 2. Полученное значение средней наработки на отказ округлять до целого числа.
Таблица 2 – исходные данные.
Общее количество объектов наблюдения (автомобилей)
Количество отказов двигателей на автомобилях
Надежность автомобиля и ее основные характеристики
Надежность автомобиля — это свойство автомобиля выполнять заданные функции, сохраняя значения установленных эксплуатационных показателей в пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонта, хранения и транспортирования.
Надежность является комплексным свойством, которое в зависимости от назначения автомобиля и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или определенное сочетание этих свойств как для автомобиля, так и для его агрегатов (систем, узлов и деталей), направленным на выполнение автомобилем рабочих функций с установленными показателями в течение ресурса до капитального ремонта.
Надежность автомобиля не остается постоянной в течение всего срока его службы. По мере изнашивания деталей, механизмов и агрегатов надежность уменьшается, так как вероятность выхода из строя деталей увеличивается. Новые автомобили всегда более надежны по сравнению с автомобилями, имеющими большой пробег или прошедшими капитальный ремонт. Следовательно, заданная степень надежности автомобиля рассматривается в связи с определенным пробегом. Надежность зависит также и от того, в каких условиях работает автомобиль.
При работе, например, на дорогах с твердым усовершенствованным покрытием надежность автомобиля больше, чем при работе по бездорожью. Надежность летом всегда выше, чем зимой, при прочих равных условиях. Поэтому, понятие «надежность автомобиля» тесно увязывается с условиями его эксплуатации. Надежность агрегатов и узлов определяется главным образом долговечностью деталей. Поэтому прежде всего необходимо широкое экспериментальное исследование, выявляющее детали, критические по надежности.
Современная наука и техника в области автомобилестроения позволяют обеспечивать ресурс основных агрегатов, в том числе двигателя до капитального ремонта и более, намного увеличивать наработку на отказ других агрегатов и механизмов. Повышение надежности автомобилей, обеспечение удобного доступа к обслуживаемым агрегатам и узлам, их совершенствование для облегчения обслуживания и ремонта, уменьшение количества точек смазки, увеличение периодичности технического обслуживания позволяют сократить простои автомобилей в техническом обслуживании и ремонте и тем самым повысить их производительность.
Автомобиль, как правило, рассчитывается на длительную работу. Разностойкость сопряжений агрегатов автомобиля требует периодических остановок для его обслуживания и замены наименее стойких деталей. Поэтому необходимо стремиться к тому, чтобы эти остановки были реже и требовали минимальных трудовых и материальных затрат. Следовательно, надежность должна содержать не только вероятность безотказной работы в течение заданного времени, но и показатели, характеризующие выполнение работ по техническому обслуживанию и ремонту в кратчайшие сроки с минимальными трудовыми и материальными затратами.
Уменьшить объем работ по техническому обслуживанию и ремонту и их трудоемкость можно либо за счет увеличения долговечности деталей, либо за счет приспособления конструкции автомобиля и его агрегатов к быстрой замене износившихся сопряжений и узлов, т. е. за счет улучшения ремонтопригодности, либо за счет одновременного улучшения показателей долговечности и ремонтопригодности.
Долговечность деталей, узлов и агрегатов и ремонтопригодность конструкции автомобиля — это два мощных рычага, с помощью которых можно повысить его надежность на стадии проектирования и в процессе модернизации.
Проблема надежности обеспечивается на четырех основных этапах:
При конструировании автомобилей должно соблюдаться правило, чем меньше ожидаемая долговечность той или иной детали сопряжения, тем большей ремонтопригодностью должна обладать конструкция автомобиля. Поэтому надежность автомобиля — категория не только техническая, но и экономическая. Она должна отражать затраты общественно необходимого труда на создание автомобиля и поддержание его в работоспособном состоянии в процессе эксплуатации. Надежность зависит прежде всего от уровня технического оснащения завода-изготовителя, заводов — пocпоставщиков сырья, качества материалов, полуфабрикатов и готовых деталей. Решение сложных проблем надежности современных автомобилей невозможно без глубокого теоретического изучения физико-химических процессов, вызывающих износ и поломку деталей, и разработки на этой базе соответствующих практических рекомендации по конструированию, производству и эксплуатации автомобилей.
Принятые на серийное производство автомобили в течение всего времени нахождения их на производстве подвергаются заводами-изготовителями конструктивному улучшению с целью повышения качества и эксплуатационных показателей. Качество изготовления автомобиля определяется техническим и технологическим уровнями производства, квалификацией персонала, применяемыми материалами и уровнем организационно-управленческого регулирования производства. В условиях серийного и массового производства изготовить бездефектные автомобили практически невозможно, потому что всегда имеются случайные факторы, которые являются причиной появления дефектов. Такими факторами могут быть погрешности технологического оборудования, инструмента, приспособлений, режимов обработки, материалов (например, неоднородность структуры), настройки измерительных средств. Таким образом, дефекты и неисправности новых автомобилей — объективная закономерность их производства. Проведение же сплошного контроля качества автомобилей, сходящих с конвейера заводов, практически невозможно и экономически нецелесообразно. Поэтому для определения показателей надежности необходимо осуществлять систематическое наблюдение за работой автомобилей в различных условиях эксплуатации в течение всего гарантийного и межремонтного пробегов. В этих целях, а также для отработки обоснованных нормативов по техническому обслуживанию и ремонту автомобилей, наиболее полноотвечающих условиям эксплуатации в различных географических и климатических зонах страны, организуется опытная эксплуатация автомобилей.
Термины надежности
Исправность — это состояние автомобиля, при котором он соответствует всем техническим требованиям, установленным нормативно-технической документацией как в отношении основных параметров, характеризующих нормальное выполнение заданных функций, так ив отношении второстепенных параметров, характеризующих внешний вид, удобство эксплуатации и т. д.
Неисправность — это состояние автомобиля, при котором он в данный момент времени не удовлетворяет хотя бы одному из требований, установленных нормативно-технической документацией.
Работоспособность — это состояние автомобиля, при котором он способен выполнять заданные функции, сохраняя значения заданных параметров в пределах, установленных нормативно-технической документацией.
Значит, между работоспособностью и исправностью существует очень важное различие: исправность предполагает, что выполняются все требования, относящиеся как к основным, так и к второстепенным параметрам, установленным нормативно-технической документацией. Работоспособность характеризует только требования, относящиеся к основным параметрам. Требования, относящиеся к второстепенным параметрам, могут не выполняться. Так, например, автомобиль остается работоспособным, когда у него повреждены лакокрасочные или антикоррозионные покрытия, сгорела лампочка освещения щитка приборов и т.д.
Отказ и его виды
Отказ автомобиля можно также определить как полную или частичную утрату им работоспособности.
Полный отказ — это отказ, лишающий автомобиль подвижности.
Частичный отказ — это снижение эксплуатационных качества автомобиля.
Неисправности, устраняемые водителем в пути с помощью индивидуального комплекта ЗИП и за время проведения ежедневного технического обслуживания, и неисправности, не влияющие на работоспособность автомобиля, в отказы не включаются.
В зависимости от причины появления отказы подразделяются на заводские и эксплуатационные.
Заводские отказы — это отказы, появившиеся по вине завода — изготовителя автомобиля. Они подразделяются на конструктивные и производственные.
Эксплуатационные отказы — это отказы, обусловленные нарушением правил эксплуатации и внешними воздействиями, не свойственными нормальной эксплуатации. Эксплуатационные отказы и неисправности при оценке надежности автомобиля не учитываются.
Отказы и неисправности, учитываемые при оценке надежности автомобиля, могут значительно отличаться по степени влияния на его работоспособность и сложности их устранения. Поэтому необходимо их классифицировать и по этим признакам.
По признаку «степень влияния на работоспособность» отказы и неисправности распределяются на три группы:
К группе лишающих автомобиль подвижности относятся отказы, без устранения которых дальнейшее его использование невозможно (отсутствие подачи топлива, поломка буксирного крюка тягача и др.) или недопустимо (отсутствие давления в системе смазки двигателя, отказ тормозов и т. п.).
Неисправности этой группы являются полными отказами автомобиля. Их появление вызывает необходимость восстанавливать автомобиль на месте выхода из строя или буксировать в автотранспортное предприятие.
К группе отказов, снижающих эксплуатационные качества, относятся отказы и неисправности, ухудшающие такие показатели, как время подготовки к движению, средняя скорость движения, грузоподъемность, проходимость, расход ГСМ и т. д., но допускающие использование автомобиля по назначению в течение некоторого времени.
К группе неисправностей, не влияющих на работоспособность, относятся неисправности, не ухудшающие основные характеристики автомобиля, не создающие неудобства при его эксплуатации и устранение которых может быть отложено до очередного номерного технического обслуживания (незначительные подтекания смазочного материала через уплотнения, трещины элементов облицовки, отслоение лакокрасочных покрытий и т. п.).
Отказы как случайные события могут быть независимыми и зависимыми. Независимый отказ — это отказ, который не приводит к отказу других элементов автомобиля. Отказ, проявившийся в результате отказа других элементов, называется зависимым. Отказ может быть внезапным, если повреждения агрегатов автомобиля наступают мгновенно, и постепенным, в результате длительного, постепенного изменения параметров элементов (усталость металла, изнашивание поверхности и пр.).
Характеристики надежности
Сравнение надежности новых и капитально отремонтированных автомобилей, работающих в одинаковых условиях, может дать объективную оценку качества ремонта.
Количественные характеристики надежности одномарочных автомобилей, полученные различными автотранспортными предприятиями, но работающих в одинаковых условиях, являются достаточно точными характеристиками уровня технической эксплуатации автомобилей в конкретном автотранспортном предприятии.
Анализ характеристик надежности автомобилей позволяет выявить узкие места в организации и технологии технического обслуживания и ремонта. Эти данные могут быть использованы для обоснованных заявок на запасные части и материалы.
Для характеристики надежности автомобиля в зависимости от конструктивно-технологических и эксплуатационных факторов принимают систему критериев, позволяющих оценивать надежность всего автомобиля или отдельных его элементов в числовых показателях. Только в этом случае можно сравнивать надежность различных марок и моделей автомобилей и вести работу по повышению их надежности.
Для обеспечения надежности автомобилей необходимо, чтобы показатели надежности задавались в техническом задании на проектирование и контролировались при разработке конструкции, изготовлении и эксплуатации. Следовательно, для каждого типа автомобилей в зависимости от условий их эксплуатации должны устанавливаться некоторая совокупность показателей надежности, значения и методы их количественной оценки.
Надежность автомобиля характеризуется четырьмя свойствами:
Безотказность — свойство автомобиля непрерывно сохранять работоспособное состояние в течение некоторого времени или некоторой наработки.
Количественно оно оценивается вероятностью безотказной работы, средней наработкой до отказа, интенсивностью отказов, средней наработкой на отказ и параметром потока отказов.
Ремонтопригодность — свойство автомобиля, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения отказов, повреждений и поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонтов.
Количественно оно оценивается средним временем восстановления, средней удельной трудоемкостью технического обслуживания и текущего ремонта, вероятностью восстановления работоспособности в заданное коэффициентом готовности, коэффициентом технического использования время и коэффициентом сложности отказов.
При сравнительной оценке различных типов автомобилей необходимо иметь в виду, что время их простоя в связи с проведением технического обслуживания или ремонта зависит от уровня организации этих работ, их технического оснащения, квалификации персонала и ряда других факторов эксплуатационного характера.
Долговечность — свойство автомобиля сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.
Безотказность и долговечность — свойства автомобиля сохранять работоспособное состояние. Но безотказность — свойство автомобиля непрерывно сохранять работоспособное состояние, а долговечность — свойство автомобиля длительно сохранять работоспособное состояние с необходимыми перерывами для технического обслуживания и ремонта.
Определение долговечности автомобилей, агрегатов, деталей должно осуществляться на стадии проектирования одновременно с определением эксплуатационных затрат на их техническое содержание.
Количественно долговечность оценивается средним ресурсом автомобиля до капитального ремонта, средней наработкой на отказ автомобиля за пробег до капитального ремонта, средней наработкой до капитального ремонта основного агрегата, гамма-процентным ресурсом.
Каждая новая модель автомобиля должна быть более совершенной по сравнению с предыдущей и соответствовать лучшим мировым образцам. Совершенство в данном случае определяется снижением суммарных удельных затрат на изготовление и техническое содержание, а также структурой этих затрат, т. е. возможным снижением доли затрат в эксплуатации. Одновременно определяются показатели долговечности, которые имеют, как правило, тенденцию к увеличению.
Долговечность автомобилей повышается в результате совершенствования их конструкции, технологии изготовления и улучшения организации технической эксплуатации.
Сохраняемость — свойство автомобиля сохранять значения показателей безотказности, долговечности и ремонтопригодности в течение и после хранения и транспортирования.
Основным показателем сохраняемости автомобилей должна быть вероятность сохранения безотказности. Этот показатель характеризует готовность автомобилей к немедленному выполнению транспортной работы после определенного срока хранения.
Показателем сохраняемости является также средний срок сохраняемости автомобилей при длительном хранении.
Перечисленные свойства отражают потенциальные возможности конструкции автомобиля. Они формируются при проектировании и производстве, являются внутренними причинами, от которых зависит степень надежности автомобиля.
Наработка на отказ автомобиля
НАДЕЖНОСТЬ В ТЕХНИКЕ
Термины и определения
Industrial product dependability. General concepts.
Terms and definitions
Дата введения 1990-07-01
1. РАЗРАБОТАН И ВНЕСЕН Институтом машиноведения АН СССР, Межотраслевым научно-техническим комплексом «Надежность машин» и Государственным Комитетом СССР по управлению качеством продукции и стандартам
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.11.89 N 3375
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который даны ссылки
Вводная часть, 5.1, 5.3
Настоящий стандарт устанавливает основные понятия, термины и определения понятий в области надежности.
Термины, устанавливаемые настоящим стандартом, обязательны для применения во всех видах документации и литературы, входящих в сферу действия стандартизации или использующих результаты этой деятельности.
Настоящий стандарт должен применяться совместно с ГОСТ 18322.
1. Стандартизованные термины с определениями приведены в табл.1.
2. Для каждого понятия установлен один стандартизованный термин.
Применение терминов-синонимов стандартизованного термина не допускается.
2.1. Для отдельных стандартизованных терминов в табл.1 приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.
2.2. Приведенные определения можно при необходимости изменять, вводя в них производные признаки, раскрывая значение используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.
2.3. В случаях, когда в термине содержатся все небходимые и достаточные признаки понятия, определение не приведено и в графе «Определение» поставлен прочерк.
2.4. В табл.1 в качестве справочных приведены эквиваленты стандартизованных терминов на английском языке.
3. Алфавитные указатели содержащихся в стандарте терминов на русском языке и их английских эквивалентов приведены в табл.2-3.
5. В приложении даны пояснения к терминам, приведенным в настоящем стандарте.
1.1. Надежность
Reliability, dependability
Свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.
Примечание. Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств
1.2. Безотказность
Reliability, failure-free operation
Свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.
1.3. Долговечность
Durability, longevity
Свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта
1.4. Ремонтопригодность Maintainability
Свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта
1.5. Сохраняемость
Storability
Свойство объекта сохранять в заданных пределах значения параметров, характеризующих способности объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования
2.1. Исправное состояние
Исправность
Good state
Состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации
2.2. Неисправное состояние Неисправность
Fault, faulty state
Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации
2.3. Работоспособное состояние Работоспособность
Up state
Состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации
2.4. Неработоспособное состояние
Неработоспособность
Down state
Состояние объекта, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.
Примечание. Для сложных объектов возможно деление их неработоспособных состояний. При этом из множества неработоспособных состояний выделяют частично неработоспособные состояния, при которых объект способен частично выполнять требуемые функции
2.5. Предельное состояние Limiting state
Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно
2.6. Критерий предельного состояния
Limiting state criterion
Признак или совокупность признаков предельного состояния объекта, установленные нормативно-технической и (или) конструкторской (проектной) документацией.
Примечание. В зависимости от условий эксплуатации для одного и того же объекта могут быть установлены два и более критериев предельного состояния
3. ДЕФЕКТЫ, ПОВРЕЖДЕНИЯ, ОТКАЗЫ
Событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния
Событие, заключающееся в нарушении работоспособного состояния объекта
3.4. Критерий отказа
Failure criterion
Признак или совокупность признаков нарушения работоспособного состояния объекта, установленные в нормативно-технической и (или) конструкторской (проектной) документации
3.5. Причина отказа
Failure cause
Явления, процессы, события и состояния, вызвавшие возникновение отказа объекта
3.6. Последствия отказа
Failure effect
Явления, процессы, события и состояния, обусловленные возникновением отказа объекта
3.7. Критичность отказа
Failure criticality
Совокупность признаков, характеризующих последствия отказа.
Примечание. Классификация отказов по критичности (например по уровню прямых и косвенных потерь, связанных с наступлением отказа, или по трудоемкости восстановления после отказа) устанавливается нормативно-технической и (или) конструкторской (проектной) документацией по согласованию с заказчиком на основании технико-экономических соображений и соображений безопасности
3.8. Ресурсный отказ
Marginal failure
Отказ, в результате которого объект достигает предельного состояния
3.9. Независимый отказ
Primary failure
Отказ, не обусловленный другими отказами
3.10. Зависимый отказ
Secondary failure
Отказ, обусловленный другими отказами
3.11. Внезапный отказ
Sudden failure
Отказ, характеризующийся скачкообразным изменением значений одного или нескольких параметров объекта
3.12. Постепенный отказ
Gradual failure
Отказ, возникающий в результате постепенного изменения значений одного или нескольких параметров объекта
3.13. Сбой
Interruption
Самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора
3.14. Перемежающийся отказ
Intermittent failure
Многократно возникающий самоустраняющийся отказ одного и того же характера
3.15. Явный отказ
Explicit failure
Отказ, обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования при подготовке объекта к применению или в процессе его применения по назначению
3.16. Скрытый отказ
Latent failure
Отказ, не обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования, но выявляемый при проведении технического обслуживания или специальными методами диагностики
3.17. Конструктивный отказ
Design failure
Отказ, возникший по причине, связанной с несовершенством или нарушением установленных правил и (или) норм проектирования и конструирования
3.18. Производственный отказ
Manufacturing failure
Отказ, возникший по причине, связанной с несовершенством или нарушением установленного процесса изготовления или ремонта, выполняемого на ремонтном предприятии
3.19. Эксплуатационный отказ
Misuse failure, mishandling failure
Отказ, возникший по причине, связанной с нарушением установленных правил и (или) условий эксплуатации
3.20. Деградационный отказ
Wear-out failure, ageing failure
Отказ, обусловленный естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления в эксплуатации
4. ВРЕМЕННЫЕ ПОНЯТИЯ
4.1. Наработка
Operating time
Продолжительность или объем работы объекта.
Примечание. Наработка может быть как непрерывной величиной (продолжительность работы в часах, километраж пробега и т.п.), так и целочисленной величиной (число рабочих циклов, запусков и т.п.).
4.2. Наработка до отказа
Operating time to failure
Наработка объекта от начала эксплуатации до возникновения первого отказа
4.3. Наработка между отказами
Operating time between failures
Наработка объекта от окончания восстановления его работоспособного состояния после отказа до возникновения следующего отказа
4.4. Время восстановления
Restoration time
Продолжительность восстановления работоспособного состояния объекта