В предыдущем номере мы рассказывали о «заповедях» автосамодельщика, а сегодня в нашей школе начинающего автоконструктора — первый урок, посвященный расчету рамы — основного несущего элемента машины. Мы не ставили цели строго следовать очередности «заповедей», чтобы при необходимости иметь возможность вновь возвращаться к отдельным темам. В перспективе — статьи о компоновке, дизайне и, конечно же, расчеты — в объеме, необходимом для проектирования и представления в ГАИ при регистрации автомобиля.
Надо ли говорить, что всякий автомобиль является источником повышенной опасности? Пожалуй это и так ясно каждому. Любая поломка, случившаяся на трассе, грозит серьезным происшествием, опасным и для водителя, и для пассажиров, и для прохожих. Поэтому при регистрации самодельного транспортного средства необходимо предъявить расчеты на прочность его рамы и основных узлов, от которых зависит безопасность.
Подобный расчет может быть выполнен по предлагаемой мною методике. Она сравнительно проста, не требует специальной инженерной подготовки и вместе с тем обеспечивает определение параметров металлоконструкции с достаточной точностью. Последовательность расчета следующая: найти центр тяжести машины, определить действующие на раму усилия, составить схемы действующих сил, построить эпюры изгибающих моментов, выявить опасное сечение, определить напряжения изгиба и запас прочности. Приведенная здесь методика дается на примере микроавтомобиля «Минимакс» конструкции автора (см. «М-К» № 1 за 1975 г. и № 11 за 1982 г.), однако она может быть с успехом применена и для самодельных автомобилей других систем.
Нахождение центра тяжести Центр тяжести (ЦТ) машины определяется графически. Для этого на бумаге в клетку или миллиметровке в избранном масштабе вычерчивается схема автомобиля, на которой прорисовывается компоновка и наносятся точки, соответствующие центрам тяжести всех основных узлов (рис. 1).
Если отдельные элементы размещены несимметрично относительно продольной оси, необходимо выполнить в том же масштабе вторую проекцию.
Далее заполняется таблица: последовательно в каждой графе указываются соответствующие точкам узлы, их вес (масса) и координата X — расстояние до нулевой отметки по оси машины. Вес кузова и рамы распределяется по длине достаточно равномерно; в данном примере смещение их ЦТ вперед учитывает некоторое утяжеление передней части, вызванное особенностями вагонной компоновки «Минимакса».
Координата ЦТ машины определяется из общей суммы произведений веса каждого узла на собственную координату, деленной на полный вес автомобиля. Для нашего случая:
где: Gi — вес отдельного узла,
Xi — координата отдельного узла,
ХЦТ — координата ЦТ машины.
Из схемы и соответствующей ей таблицы нетрудно определить распределение нагрузки по осям, исходя из условия, что сумма моментов сил относительно любой из осей должна быть равна нулю. Так, относительно задней оси:
где: Х02 — координата задней оси, Х01 — координата передней оси, G01 — нагрузка на переднюю ось.
Соответственно, нагрузка на заднюю ось составит: G02 = ΣGi-G01= 1000-470 = 530 (кгс).
Расчет усилий, действующих на раму
Вес некоторых перечисленных в таблице компонентов не воздействует на раму. Так, под нею находятся подвески с колесами. Можно пренебречь и массой кузова, поскольку она сильно распределена по длине. Дело в том, что кузов имеет довольно жесткую конструкцию, надежно соединенную с лонжеронами, что не увеличивает, а, наоборот, уменьшает нагрузки на раму (соответственно повышая и запас прочности).
При прочностном расчете автомобиля применяется так называемый динамический коэффициент, учитывающий перегрузки, возникающие в момент наезда на неровности дороги. Обычно такой коэффициент принимают равным 1,75, хотя у автомобилей повышенной проходимости он может быть и выше. Величина динамической нагрузки Р = 1,75 G указана в последнем столбце таблицы. Суммарное значение расчетной нагрузки равно 989 кгс, а координата ЦТ составит:
Общие принципы расчёта кузова (рамы) на работоспособность.
При движении автомобиля несущий кузов воспринимает изгибающие нагрузки от веса груза, пассажиров, установленных на нем агрегатов и механизмов, а также от собственного веса. Кузов воспринимает также крутящие нагрузки при боковых кренах и перекосах мостов, инерционные нагрузки при разгоне и торможении, испытывает вибрации при собственных колебаниях.
Кузов представляет собой пространственную систему, и его расчет на сложные напряжения изгиба и кручения весьма затруднителен.
Расчет кузова производится различными приближенными методами с упрощениями и допущениями. К этим методам относятся следующие: метод потенциальной энергии, метод тонкостенных стержней и метод конечных элементов.
Метод потенциальной энергии используют при сравнительных расчетах на начальной стадии проектирования кузова.
Метод, основанный на теории тонкостенных стержней, применяют после завершения разработки конструкции кузова.
Метод конечных элементов является наиболее точным при расчете кузова. Этот метод основан на совместном рассмотрении напряженного состояния системы небольших элементов конечного размера. Метод заключается в том, что реальная конструкция кузова автомобиля заменяется структурной моделью (рис 14.18), состоящей из простейших элементов (стержни, пластины и другие объемные детали) с известными упругими свойствами. А при известных упругих свойствах отдельных элементов можно определить свойство кузова при определенных нагрузках.
Расчет кузова выполняют за несколько этапов. Вначале кузов разбивают на отдельные простые элементы. При этом на одной половине по оси симметрии кузов разбивают на 200 — 500 элементов. Затем получают координаты узловых точек кузова. После этого проводят расчет с использованием ЭВМ.
Однако основным методом оценки прочности кузова являются стендовые или дорожные испытания кузова на изгиб и кручение.
Прочность кузова оценивают по пределу текучести материала as. При одностороннем растяжении или сжатии допускаемые напряжения
где £без = 1,3. 1,8 — коэффициент безопасности, учитывающий местные концентраторы напряжений, технологические отступления, нестабильность механических свойств и др.
Удельная крутильная жесткость кузова характеризует сопротивление кузова закручиванию. Она представляет
собой отношение крутящего момента к углу закручивания кузова на длине базы автомобиля, умноженное на размер базы. Для легковых автомобилей удельная крутящая жесткость кузова составляет 130. 300 Н*м2/°.
Удельная изгибная жесткость кузова характеризует изгиб кузова в вертикальной плоскости. Она представляет собой отношение нагрузки к прогибу кузова, умноженному на размер базы автомобиля в третьей степени. Для легковых автомобилей изгибная жесткость кузова находится в пределах 850. 2 200 Н • м2/°.
Для изготовления автомобильных кузовов применяют стали, физико-механические свойства которых позволяют в высокой степени механизировать и автоматизировать производство кузовов.
В связи с высокими требованиями к штампуемое для кузовов используют низкоуглеродистую сталь 08кп и конструкционную сталь 08.
Для панелей большого размера (крыша, задние крылья, двери, пол и др.) применяют листовую сталь толщиной 0,9 и 0,75 мм. Детали каркаса (стойки, пороги, продольные балки и поперечины основания) изготавливают из листов толщиной 1,0 и 1,3 мм. Для отдельных усилителей используют листы толщиной 1,6. 2,4 мм.
Нахождение центра тяжести.
Центр тяжести (ЦТ) машины определяется графически. Для этого на бумаге в клетку или миллиметровке в избранном масштабе вычерчивается схема автомобиля, на которой прорисовывается компоновка и наносятся точки, соответствующие центрам тяжести всех основных узлов (рис. 1).
Если отдельные элементы размещены несимметрично относительно продольной оси, необходимо выполнить в том же масштабе вторую проекцию.
Координата ЦТ машины определяется из общей суммы произведений веса каждого узла на собственную координату, деленной на полный вес автомобиля. Для нашего случая:
Из схемы и соответствующей ей таблицы нетрудно определить распределение нагрузки по осям, исходя из условия, что сумма моментов сил относительно любой из осей должна быть равна нулю. Так, относительно задней оси:
Σ Gi*(Х02- ХЦТ ) = G01 * (Х02-Х01),
Соответственно, нагрузка на заднюю ось составит: G02 = ΣGi-G01= 602-218 = 384 (кгс).
Курсовая работа: Расчёт на прочность кузова автомобиля ВАЗ 2108
Название: Расчёт на прочность кузова автомобиля ВАЗ 2108 Раздел: Рефераты по транспорту Тип: курсовая работа Добавлен 21:22:19 13 марта 2011 Похожие работы Просмотров: 5250 Комментариев: 20 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно Скачать
«Расчёт на прочность кузова автомобиля ВАЗ 2108»
1. Обзор существующих конструкций
1.1 Моделирование конструкций конечными элементами
1.2 Нагрузочные режимы
2. Построение математической модели
2.1 Описание кузова автомобиля ВАЗ 2108(09)
2.2 Ход построения модели кузова автомобиля ВАЗ 2108(09)
2.3 Ход проверки на прочность кузова автомобиля ВАЗ 2108(09)
В соответствии с ГОСТ обязательно проведение ходовых испытаний автомобиля. Сами ходовые испытания не являются дорогостоящими, но для выбора наилучшей конструкции кузова необходимо разработать и создать несколько его вариантов (пилотные версии). Каждая деталь изготавливается вручную, что приводит к потере времени и средств. Но наиболее дешёвым и быстрым является построение математическим способом модели и её расчётная проверка. Затем на основе проведённых исследований выбрать конструкцию. Создать её и испытания проводить лишь для доказательства правильности выполненной работы.
В настоящее время САПР (системы автоматического проектирования) используются практически всеми компаниями про проектированию автомобилей. К этим системам относится и такая программа, как SolidWorks, которая является одним из лидеров в 3D САПР. Основной задачей таких программ является создание простой и приемлемой для пользователей методики построения расчётной модели, позволяющей заменить натурные испытания.
Модель строится в виде цельной детали, мелкие детали, не влияющие на прочность не показываются. Материалом кузова принимаем сталь предназначенную для изготовления кузовных деталей – Ст3. Кузов автомобиля ВАЗ 2108 относится к оболочковым кузовам. Оболочковые кузова выполняются из крупных штампованных деталей, наружных и внутренних панелей, соединённых точечной сваркой в замкнутую силовую систему преимущественно из стального листа, толщиной 0,6…0,8 мм.
Нагрузками, действующими на автомобиль являются нагрузки от дороги, максимальное значение которых будет передаваться на кузов через подвеску при её полном сжатии. Т.о. для упрощения расчётов принимаем допущение, что подвеска передаёт все реакции, от дороги меняя их лишь по направлению, но не по величине.
Как известно жесткость кузова обеспечивается применением лонжеронов. На основании этого действует правило, что при разрушении или нарушения параллельности лонжеронов эксплуатация автомобиля невозможна. Будет происходить неконтролируемый занос. Т. Е. из выше вышесказанного следует, что основное внимание при расчёте необходимо уделить определению допустимых нагрузок на лонжероны.
Расчёт производим в статистике с применением коэффициента динамической нагрузки Кд = 1,1…2.
Часть кузова, состоящая из продольных и поперечных лонжеронов, была закреплена соответствующим образом и нагружена, после чего будет выполнен расчет на прочность в программах CosmosWorks, Nastrane и др. Далее, определив расчёт лонжеронов на усталостную прочность и определим максимальное количество циклов нагружения в период эксплуатации кузова.
1. Обзор существующих конструкций
В современных условиях перед проектировщиками машиностроительных конструкций стоит сложная задача: в кратчайшие сроки спроектировать конструкцию, близкую к оптимальной по ряду основных параметров. Высокий уровень конструкции, в том числе рам, кузовов, кабин, обеспечивается только в том случае, если качественно спроектированная и изготовленная конструкция соответствует предъявляемым к ней требованиям.
В этой главе особое внимание уделено вопросам проектирования конструкций на базе накопленного в мировой и отечественной практике опыта использования современных высокоэффективных методов расчета, основным из которых является МКЭ, а также рассмотрены особенности проектирования с использованием высококачественных материалов, в том числе нетрадиционных (алюминиевых сплавов, композиционных материалов и др.).
Несущей системой называют конструкцию, которая воспринимает все нагрузки, возникающие при ее движении, и служит основанием для крепления узлов и агрегатов КМ (колёсная машина). Рама является важнейшим элементом большинства КМ. Характерно, что в случае выхода из строя рамы, как и любой другой несущей системы, невозможна эксплуатация КМ, а ремонтные работы трудоемки и дорогостоящи.
Рамы подразделяют на лонжеронные, хребтовые и шарнирные. Лонжеронные рамы состоят из двух лонжеронов, связанных между собой поперечинами. Места соединений лонжеронов и поперечин называют узлами (рис. 1.1 а, б). Хребтовые рамы имеют одну центральную несущую систему, составленную из картеров трансмиссии и патрубков. Эти рамы не распространены ввиду сложности обслуживания трансмиссий, повышенных требований к качеству материала, изготовлению и сборке по сравнению с лонжеронными.
Шарнирные рамы применяют, как правило, на КМ, движение по криволинейной траектории которой осуществляется за счет поворота шарнирно-соединенных секций (сочлененные КМ).
Рис. 1.1 Лонжеронные рамы КМ:
Общий, пробег КМ в эксплуатации непосредственно зависит от долговечности несущей системы кузова.
Кузова легковых КМ выполняют закрытыми или открытыми со съемным верхом. Для последних характерны малые габаритные размеры и масса, невысокая стоимость, они позволяют обеспечить хорошую обзорность экипажу и оперативность его посадки и высадки при снятом тенте. Их недостатком является плохая защита от климатических и других воздействий.
Кузова автобусов изготавливают в виде фургонов или вагонного типа. Фургоны устанавливают на шасси КМ повышенной и высокой проходимости, поскольку такие автобусы предназначены для бездорожья и разбитых грунтовых дорог. По сравнению с кузовами вагонного типа (применяемыми соответственно в автобусах для дорог с асфальтобетонным покрытием) фургоны имеют на 25. 30 % меньший коэффициент использования габаритных размеров. Однако они универсальны (их можно устанавливать на различные шасси и прицепы) и позволяют упростить ремонт и обслуживание КМ. Различают кузова типа фургонов каркасные и бескаркасные. Наиболее перспективны бескаркасные, так называемые трехслойные конструкции, обладающие высокими прочностью и жесткостью при малой массе, хорошими акустическими и теплоизоляционными характеристиками.
Кузова грузовых КМ подразделяют на закрытые (фургоны) и открытые со съемным брезентовым тентом. Закрытые кузова позволяют обеспечить защиту грузов от внешних воздействий, но в отличие от открытых обладают большей массой и стоимостью. В основном кузова представляют собой бортовую платформу с опрокидывающимися бортами (одним задним или также и боковыми).
Платформа имеет продольные и поперечные силовые балки и настил из досок, фанеры, ДСП, металлических профилей или листов, армированных пластмасс. Борта выполняют из досок, скрепленных металлическими стойками, стальных штампованных элементов или прокатных профилей, скрепленных болтами или сваренных, а также алюминиевых профилей. Размеры откидывающихся бортов обусловлены рядом требований (эргономическими, минимальной массой, высотой подъема и др.).
Кузов грузовой КМ закрепляют на раме в нескольких точках. Если кузов длинный, то часть опор снабжают упругими элементами (пружины или резиновые блоки).
Все контейнеры по углам снабжены специальными фитингами для крепления, а перевозящие их КМ имеют специальные замки, смонтированные на платформе или раме.
Конструкция кабин КМ во многом определяется общим назначением машины и особенностями ее эксплуатации. Этим обусловлено большое разнообразие конструктивных схем каркасов и кабин. Кабины классифицируют следующим образом:
При небольшом объеме производства кабины выполняют обычно каркасными, простой формы с обшивкой из металла или из полимерных материалов;
Цельнопластмассовая бескаркасная кабина панельно-оболоченного типа представлена на рис. 1.2. Ее конструкция полностью соответствует мелкосерийному характеру производства, рассчитана на контактный метод формования элементов из полиэфирного стеклопластика холодного отверждения.
Ко всем этим конструкциям предъявляют общие требования: обеспечение необходимых значений жесткости, прочности и долго вечности при минимальной массе, технологичности, минимальной стоимости.
Кроме того, при создании кузова и кабины необходимо выполнение следующих требований: защита людей при авариях и других видах воздействий; соответствие уровня вибраций и шумов действующим нормам; свободный доступ к системам, узлам и агрегатам КМ при их обслуживании; хорошая обзорность, удобство посадки и высадки, высокие эргономические качества; удобство погрузки и разгрузки перевозимых грузов; герметичность и достаточная тепло- и шумоизоляция; выполнение требований эстетики; обеспечение высокой коррозионной стойкости и др.
Геометрия конструкции моделируется совокупностью элементов различной размерности и различных форм, представляющих три группы:
одномерные элементы, имеющие форму прямой линии или дуги окружности;
двумерные элементы треугольной и четырехугольной формы;
При моделировании требуемых упруго-массовых свойств конструкции кроме геометрии конечных элементов учитываются их свойства, то есть способность воспринимать нагрузку и испытывать деформацию определенного вида. Так, например, некоторая часть одномерных элементов конструкции может работать только на растяжение-сжатие, а другая может к тому же воспринимать изгиб и кручение.
Для моделирования граничных условий и массовых свойств конструкции предназначены специальные элементы, образующие группу «другие» (other).
Расположение элемента в пространстве зависит от координат узлов, принадлежащих элементу. В узлах определяются обобщенные узловые смещения. Узловыми смещениями могут быть компоненты вектора перемещений вдоль осей координат и углы поворота элемента в узлах вокруг осей координат. Обобщенные узловые смещения обозначаются термином степени свободы или сокращенно DOF (degreesoffreedom).
Набор или список степеней свободы модели зависит от типа элементов, используемых при моделировании.
1.2 Нагрузочные режимы
Рассмотрим экстремальные детерминированные нагрузки и соответствующие им режимы эксплуатации. Статические расчеты несущих систем КМ выполняют для симметричных (изгиб), кососимметричных (кручение) и боковых (в горизонтальной плоскости) нагрузок.
Вертикальную симметричную нагрузку RZ (рис. 1.2.1, а) можно вычислить, используя выражение
Вертикальная несимметричная нагрузка возникает при наезде колесом на препятствие и при вывешивании колеса (или колес) (рис. 1.2.1, б). В первом случае вертикальную несимметричную нагрузку можно определить по приведенной выше формуле, учитывая, что kД = 1,5 для грузовых КМ;
kД = 1,8 для автомобилей высокой проходимости; kД = 1,3 для легковых КМ и автобусов.
Момент, закручивающий несущую систему, равен
При расчете несущей системы на изгиб от действия вертикальных нагрузок необходимо учитывать координаты точек их приложения. Динамические нагрузки в этом случае характеризуются эмпирическими коэффициентами (например, коэффициентом динамичности).
Боковые силы действуют на КМ при ее движении по криволинейной траектории (рис. 1.2.1, в), в случае появления несимметричных нагрузок при тяговом и тормозном режимах, а также при боковом столкновении с препятствием.
Максимально возможная центробежная сила Fyдо переворота при криволинейном движении определяется следующим выражением (см. рис. 1.2.1. в)
где Ry – реакция от дороги на колёса, zM – расстояние от опорной поверхности до центра масс КМ. При этом
При боковом ударе передним колесом о препятствие на КМ действуют нагрузки, наибольшая из которых изгибает несущую систему в горизонтальной плоскости. В случае экстремального режима боковая нагрузка пропорциональна весу КМ и коэффициенту kσ сцепления колеса с поверхностью дороги (с учетом коэффициента динамичности):
Для плавающих КМ следует учитывать выталкивающую силу воды и давления встречного потока (рис. 1.2.1, д).
Из рассмотренных выше режимов наихудшим по параметрам прочности и жесткости несущих систем является режим преодоления коротких препятствий (углублений, выступов) косым курсом. В этом случае на несущую систему действуют преимущественно кососимметричные нагрузки, вызывающие ее кручение относительно продольной оси КМ. Этот режим принимают как квазистатический в связи с тем, что движение осуществляется с минимальной скоростью и, следовательно, инерционными нагрузками пренебрегают.
В предельном случае при преодолении препятствий косым курсом возможен отрыв колеса (колес) от дороги. При этом нагрузки можно определить, исходя из условия статического равновесия: при lп > 0,5LM (см. рис. 1.2.1, б)
Так как конструкция модели сложна, стало невозможным произвести расчёт, используя вычислительную технику, в связи с малой её мощностью.
1. Проектирование полноприводных колёсных машин: В 2-т. Т.2. Учеб. для вузов Б.А. Афанасьев, Б.Н. Белоусов, Л.Ф. Жеглов и др.; Под общ. ред. А.А. Полунгяна. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. – 640 с.
2. Осепчугов В.В., Фрумкин А.К. Автомобиль: анализ конструкции, элементы расчёта: Учебник для студентов вузов по специальности «Автомобили и автомобильное хозяйство». – М.: Машиностроение, 1989. – 340 с.: ил.
3. Ашмаров А.В. Крупный ремонт ВАЗ 2108. Руководство к действию: иллюстрированное издание. – М.: Третий Рим, 2000.
Для прохождения сертификации транспортных средств с самодельным кузовом требуется прочностной расчет рамы (кузова). Предлагаемый материал поможет провести расчет собственными силами. Такое требование не напрасно, автомобиль является источником повышенной опасности, и надо быть уверенным, что транспортное средство безопасно для окружающих.
Было бы правильно для целей расчета кузова вспомнить теоретическую механику, но на самом деле этого не требуется. Настолько серьезно подходят к расчетам при конструировании самолетов и ракетной техники. Для самодельного автомобиля в этом нет необходимости. Полномаштабные расчеты не делаются и для серийных автомобилей. Их прочность определяется краш-тестами. В настоящей статье сделаем простейшие расчеты, достаточные для того, чтобы убедиться, что кузов не развалится при эксплуатации. Для этого используем эмпирически полученные опорные значения прочности.
Цель статьи: определить центр тяжести машины и действующие на раму усилия, составить схемы действующих сил, построить эпюры изгибающих моментов, выявить опасное сечение, определить напряжения изгиба и запас прочности.
Приведенная в статье методика показана на примере кузова электромобиля «Нафаня» 2008 года постройки. Методика может быть перенесена на любую другую форму кузова.
Нахождение центра тяжести.
Центр тяжести (ЦТ) машины определяется графически. Для этого на бумаге в клетку или миллиметровке в избранном масштабе вычерчивается схема автомобиля, на которой прорисовывается компоновка и наносятся точки, соответствующие центрам тяжести всех основных узлов (рис. 1).
Если отдельные элементы размещены несимметрично относительно продольной оси, необходимо выполнить в том же масштабе вторую проекцию.
Координата ЦТ машины определяется из общей суммы произведений веса каждого узла на собственную координату, деленной на полный вес автомобиля. Для нашего случая:
X ЦТ =(ΣGiXi)/(ΣGi)=105489/602=170(см)
Из схемы и соответствующей ей таблицы нетрудно определить распределение нагрузки по осям, исходя из условия, что сумма моментов сил относительно любой из осей должна быть равна нулю. Так, относительно задней оси:
Соответственно, нагрузка на заднюю ось составит: G 02 = ΣGi-G 01 = 602-218 = 384 (кгс).
Расчет усилий, действующих на раму
Вес некоторых перечисленных в таблице компонентов не воздействует на раму. Так, под нею находятся подвески с колесами. Можно пренебречь и массой кузова, поскольку она сильно распределена по длине. Дело в том, что кузов имеет довольно жесткую конструкцию, надежно соединенную с лонжеронами, что не увеличивает, а, наоборот, уменьшает нагрузки на раму (соответственно повышая и запас прочности).
При прочностном расчете автомобиля применяется так называемый динамический коэффициент, учитывающий перегрузки, возникающие в момент наезда на неровности дороги. Обычно такой коэффициент принимают равным 1,75, хотя у автомобилей повышенной проходимости он может быть и выше. Величина динамической нагрузки Р = 1,75 G указана в последнем столбце таблицы. Суммарное значение расчетной нагрузки на раму равно 410 кгс, а координата ЦТ без учета веса рамы и подвески составит:
Х 1 ЦТ =Σ(Gi*Xi)/ΣGi=78858/410=185(см)
Нагрузка на переднюю ось определяется аналогично расчету, приведенному по следующей формуле.
Соответственно, на заднюю ось приходится нагрузка: R 02 =ΣP-R 01 = 175-206=511(кгс).
На рисунке слева направо графически располагаем нагрузки согласно таблицы. Первая нагрузка действует до опоры на подвеску, затем действует нагрузка, расположенная между двумя точками опоры. Точку приложения обозначаем в соответствии со шкалой выше нашего рисунка. Далее между второй точкой опоры и третьей расположено множество нагрузок. Находим центр тяжести этой группы нагрузок по аналогии, как это делали выше. Вот формула:
Х ЦТ =Σ(Gi*Xi)/ΣGi=191(cм)
Далее осталось обозначить нагрузку, действующую после третьей точки опоры. Это будет аккумулятор, расположенный в заднем отсеке кузова.
Разложив каждый из весов, действующие на две точки опоры на составляющие (пропорционально плечам), получим, что противоположно направленные силы взаимно исключат друг друга. Следовательно, расчетная схема примет вид, показанный на рисунке 2Б.
Находим силу F из условия равенства нулю суммы моментов относительно точки Б:
Эпюра изгибающих моментов (рисунок 2В) строится по оси ординат как сумма произведений силы на соответствующее плечо. Так, для сечения А изгибающий момент в кгс*см составит:
М А = 0.5*5 = 2.5 (кгс*см).
Аналогично для сечения Б подсчитываем:
Расчитаем то же для сечения В :
М В = 41*70 = 2870 (кгс*см).
Выбор опасного сечения
Расчет момента сопротивления
Момент сопротивления W обычно определяют по справочникам для определенного сортамента профиля. Однако его нетрудно и рассчитать. При использовании прямоугольной трубы:
Для круглой трубы момент сопротивления можно определить по формуле:
Расчетные напряжения и запас прочности
Поскольку изгиб рамы воспринимается двумя продольными лонжеронами, то на каждый из них придется лишь половина момента. Таким образом, напряжение изгиба будет равно:
σ ИЗГ =M MAX /(2W)=2870/(2*7.8)=184 кгс/см 2
Соответственно запас прочности: n=[σизг]/σизг=1500/184=8.15
В целом запас прочности должен быть не менее n = 2. Полученное в нашем примере столь большое значение не случайно. Это результат удачно выбранной схемы, в которой изгибающие моменты «гасят» друг друга. Так, если бы над рамой не было дополнительных продольных элементов, то нагрузки от веса двигателя и пассажиров вызвали бы моменты в продольных лонжеронах в 3-4 раза выше, чем сейчас. Такой прием локализации силовых нагрузок можно рекомендовать всем любителям автоконструирования.
Масса рамы «Нафани», включая четыре поперечины и две продольные трубы, составляет всего 40 кг, или примерно 7% от конструктивной массы машины. В принципе, исходя из большого запаса прочности, возможно и дальнейшее снижение веса, однако при этом не следует забывать о жесткости металлоконструкции.
При необходимости усилить раму, можно воспользоваться расчетными формулами приведенными на стр. 79 книги «Несущий каркас кузова автомобиля и его расчет», Дж.Фентон. Для этого применима точечная сварка для усиления рамы укрепляющей пластиной.
В случае применения в постройке электро-автомобиля несущего кузова для расчета кузова рекомендуется изучить главу 4 указанной выше книги, посвященную исследованию кузова.
Примечание: Для любителей легкого транспорта рекомендую книгу: «Справочник веломобилиста», 1,8 Мб.