регулировочные работы на автомобиле что это

road 6205261 1920

Регулировочные работы по ходовой части

Регулировочные работы по ходовой части автомобиля заключаются в проверке и регу­лировке углов установки передних, колес, регу­лировке предельного угла поворота передних колес, регулировке осевого зазора между по­воротным кулаком и проушиной балки перед­них колес и регулировки подшипников ступиц передних колес.

Проверка и регулировка уста­новки передних колес. Измерение уг­лов установки передних колес производят при помощи оптического стенда или переносного прибора ГАРО. Углы установки передних колес приведены в табл. 8.

Схождение передних колес определяют по разности расстояний между ободами колес или шинами сзади и спереди. Для проверки схож­дения передние колеса ставят в положение, соответствующее прямолинейному движению. Автомобиль продвигают вперед так, чтобы бы­ли выбраны все зазоры в сочленениях передне­го моста. Измерив расстояние между боковыми поверхностями шин спереди специальной ли­нейкой, делают на них отметку мелом в местах касания линейки. Затем перекатывают автомо­биль вперед так, чтобы отметка оказалась сза­ди переднего моста, и вновь измеряют расстоя­ние между отметками.Изменение угла наклона шкворня назад может произойти у грузовых автомобилей вследствие прогиба или скручивания балки пе­реднего моста, поломки или большого проги­ба (осадки) передних рессор, износа деталей шкворневых соединений.

Восстановление угла наклона шкворня на­зад требует замены деформированных деталей. В отдельных случаях довести угол до требуе­мой величины можно, применив стальную под­кладку (клин), установив ее между площадкой балки переднего моста и рессорой.Угол бокового- наклона шкворня может быть нарушен в результате погнутости балки переднего моста. Причиной изменения угла развала могут быть прогиб балки переднего моста, износ деталей шкворневого соединения, недостаточная затяжка подшипников ступиц передних колес.Указанные углы у грузовых автомобилей не поддаются регулировке. Для их восстановле­ния погнутую балку переднего моста правят в холодном состоянии под прессом, а изношен­ные детали шкворневого соединения заменяют новыми.Величина схождения передних колес мо­жет быть отрегулирована. Для этого, отвернув гайки стяжных болтов наконечников, повора­чивают поперечную рулевую тягу, имеющую по своим концам резьбу с разным направлением. Установив поворачиванием тяги требуемую величину схождения, затягивают и зашплинтовывают гайки стяжных болтов наконечников.

Регулировка предельного угла поворота передних колес.

Наиболь­ший (предельный) угол поворота передних ко­лес ограничивается положением упорных бол­тов, расположенных на поворотных рычагах. При достижении предельного угла поворота эти болты упираются в выступы балки перед­него моста. Наибольший угол поворота выби­рается из условия, чтобы при повороте колеса не задевали за какие-либо детали.Регулируют наибольший угол поворота подвертыванием упорных болтов. Наибольший угол поворота наружного колеса дается при повороте внутреннего колеса на 20°.Угол поворота наружного колеса при пово­роте внутреннего колеса на 20° для отечествен­ных грузовых автомобилей составляет: УАЗ- 451М =18°30′, ГАЗ-53А =17°30′, «Урал-375», «Урал-377»= 18°, ЗИЛ-130=18°, ЗИЛ-131 =18°.

Регулировка осевого зазора между поворотной цапфой и про­ушиной балки переднего моста.

У грузовых автомобилей с неразрезной балкой переднего моста нельзя допускать повышен­ного осевого люфта поворотной цапфы. С этой целью производят проверку величины зазора между поворотной цапфой и внутренней торцо­вой поверхностью балки переднего моста. Этот зазор не должен превышать у грузовых авто­мобилей Горьковского автозавода — 0,15 мм и у грузовых автомобилей ЗИЛ—0,25 мм. Если этот зазор выходит за указанные пределы, то рекомендуется установить регулировочную прокладку.

Регулировка подшипников сту­пиц передних и задних колес.

Своев­ременная регулировка подшипников ступиц колес позволяет избежать осевой качки колеса и тем самым предохранить подшипники от преждевременного износа. Регулировку подшипников передних колес выполняют в следующем порядке. Подняв домкратом передний мост до отрыва шин от опорной поверхности, расшплинтовывают и ослабляют гайку цапфы поворотного ку­лака так, чтобы колесо свободно вращалось. Если обнаружится тугое вращение колеса, то устраняют вызвавшие его причины (задевание тормозных колодок, заедание сальников, вы­ход из строя подшипников). После этого затягивают гайку цапфы поворотного кулака до тугого вращения колеса на подшипниках. При. этом поворачивают колесо, чтобы ролики в подшипниках заняли правильное положение относительно колец. Степень затяжки проверя­ют, заставляя колесо поворачиваться толчком руки, после которого оно должно сразу же ос­танавливаться. Отпустив гайку на 2—3 шплинтовочных отверстия (или прореза), до совпа­дения с шплинтовочным отверстием кулака, вновь проверяют вращение колеса, которое должно сделать до полной остановки не менее 8 оборотов после сильного толчка рукой. По окончании регулировки гайку надежно шплинтуют.

О правильности регулировки подшипников ступиц переднего моста можно судить по на­греву ступицы во время движения. Если нагрев ступицы ощущается рукой, то рекомендуется ослабить затяжку гайки на одно шплинтовочное отверстие. Для определения осевого люфта подшипни­ков заднего колеса его вывешивают и отсоеди­няют полуось от ступицы. s35Перед регулировкой подшипников проверя­ют, нет ли задевания колодок за барабаны, что затрудняет проворачивание колеса. При необ­ходимости регулировки отвертывают контргай­ку 1 (рис. 35) и снимают замочную шайбу 2 с сальником 4. Отпускают на 1 /2 оборота гайку 3 крепления подшипников и проверяют враще­ние колеса. Затем затягивают гайку 3 усили­ем одной руки при помощи ключа с воротком длиной 350—400 мм до тех пор, пока не нач­нется торможение ступицы. При этом повора­чивают ступицу в обоих направлениях, чтобы ролики подшипников правильно установились по коническим поверхностям колец. После это­го отпускают гайку крепления подшипника на 1 /5 оборота и вводят стопорный штифт в одну из прорезей замочной шайбы. Если штифт не входит в прорезь, то поворачивают гайку в ту или другую сторону настолько, чтобы штифт вошел в ближайшую прорезь. Закончив эту операцию, навертывают и слегка затягивают контргайку и проверяют степень затяжки под­шипников. Если подшипники затянуты правиль­но, то колесо должно вращаться без заметного осевого люфта и качки. Поставив на место по­луось, окончательно затягивают контргайку.

Регулировка подшипников шкворней поворотного кулака.

У ав­томобилей с передними ведущими колесами необходимо регулировать затяжку подшипни­ков шкворней поворотного кулака. У автомобилей ГАЗ-66 и УАЗ шкворни поворачи­ваются в конических роликовых подшипниках. Эти подшипники должны быть отрегулированы так, чтобы в них не ощущался люфт.

Источник

Регулировка клапанов: что это, зачем нужно, и что будет, если ее не делать

klapandvigatela 1

Если вы становились свидетелем сцены, когда опытный автомобилист деловито открывал капот машины (вашей или своей), некоторое время вслушивался в звук работающего мотора, а потом многозначительно произносил фразу «клапаны надо отрегулировать», но при этом для вас его слова были не понятнее звука двигателя, который он слушал, то сегодня мы попробуем этот пробел восполнить. Что такое регулировка клапанов, зачем она нужна, когда ее нужно делать, и что будет, если ее не делать совсем? И почему на многих машинах регулировка клапанов вообще не нужна? Давайте разберемся.

Р абота обычного поршневого двигателя предполагает подачу в цилиндры топливовоздушной смеси и отвод из них отработавших газов. Обе функции выполняют клапаны – соответственно, впускные и выпускные, попеременно открываясь в нужное время для наполнения и опорожнения цилиндра. Управляет их работой распределительный вал, имеющий специальные кулачки, которые воздействуют на верхнюю часть клапана, открывая его в цилиндр. Конструкций приводного механизма существует несколько – распредвал может воздействовать на клапаны почти непосредственно, надавливая кулачком на толкатели, или, к примеру, через специальные коромысла, толкая один их конец, в то время как другой давит на клапан. Но в любом из случаев в конструкции есть интересующая нас особенность: тепловой зазор между кулачком распредвала и деталью клапанного механизма, которая открывает клапан. Ведь рабочая температура деталей двигателя, особенно клапанного механизма и собственно клапанов, очень высока, а при нагревании металл имеет свойство расширяться, что приводит, в частности, к удлинению клапана. Именно для компенсации этого расширения нужен тепловой зазор, а регулировка этого зазора и называется «регулировкой клапанов»

Да, с логической точки зрения формулировка «регулировка клапанов» не совсем верна. Клапан при нормальных условиях, когда на него не давит кулачок распредвала, закрыт: тарелка клапана плотно прижата пружиной к седлу в головке блока цилиндров, а должная герметичность обеспечивается фасками на обоих элементах. Соответственно, никакая регулировка клапану здесь не требуется – а вот тепловой зазор должен быть правильным. То есть, более корректно говорить не «регулировка клапанов», а «регулировка теплового зазора привода клапанов».

Если представить себе комбинацию «клапан – толкатель – распредвал» без теплового зазора – то есть, плотно прилегающими друг к другу при неработающем двигателе, то несложно понять, что при выходе на рабочую температуру на удлинившийся клапан, «вытягиваемый пружиной из цилиндра» в сторону распредвала, из-за температурного расширения начнет постоянно давить этот самый распредвал, приводя к небольшому сжатию пружины и неплотному закрытию клапана. То есть, при достижении рабочей температуры клапан фактически перестанет полноценно выполнять одну из своих функций: плотно закрываться для герметизации камеры сгорания и ее изоляции от впускного или выпускного тракта.

Подобное может произойти, к примеру, из-за износа седел и тарелок клапанов. Соответственно, в этом случае регулировка клапанов нужна, чтобы обеспечить нужный тепловой зазор для обеспечения полного закрытия клапанов.

Второй вариант – увеличение теплового зазора: например, из-за износа поверхностей кулачков распредвала и элементов привода клапанов. В этом случае даже после достижения двигателем рабочей температуры между распредвалом и клапанным механизмом будет оставаться зазор, а касаться они будут ударно и только в момент воздействия кулачка. Это уже пагубно влияет на ресурс клапанного механизма, но есть и другие последствия: клапан будет открываться чуть позже и не полностью – а значит, ухудшится наполняемость цилиндра топливовоздушной смесью.

Если не регулировать клапаны своевременно, это приведет к изменению теплового зазора. При этом и увеличение, и уменьшение теплового зазора, как мы уже поняли, негативно влияет на ресурс и работу двигателя. Уменьшение зазора означает неполное закрытие клапанов, которое приводит к ряду последствий. Негерметичность камеры сгорания из-за приоткрытого клапана приводит к падению компрессии и прорыву раскаленных газов во впускной или выпускной тракт (в зависимости от того, впускной или выпускной клапан приоткрыт).

Кроме того, стоит отметить значительно увеличивающуюся тепловую нагрузку на клапаны. Ведь плотный контакт закрытого клапана с седлом – это одно из важных условий его охлаждения, а если клапан неплотно прилегает к седлу, охлаждение ощутимо ухудшается. Особенно это касается выпускных клапанов: впускные дополнительно охлаждаются поступающей в цилиндры топливовоздушной смесью, а вот выпускные обеспечивают выход отработавших газов крайне высокой температуры, и для них охлаждение в зоне контакта с седлом имеет критическую важность. В крайнем случае плохое охлаждение клапана из-за малого теплового зазора может привести к его перегреву и разрушению – так называемому прогару. Кроме того, прорыв горящей топливовоздушной смеси в выпускной тракт повышает нагрузку на катализатор (а при его разрушении абразивная пыль может повредить и цилиндры).

Последствия увеличения теплового зазора несколько иные. Как было сказано выше, оно приводит к ударному воздействию распредвала на клапанный механизм, что негативно сказывается на его ресурсе, а также к несвоевременному и неполному открытию клапана. Ухудшение наполнения цилиндра топливовоздушной смесью при этом означает нарушение фаз газораспределения и снижение отдачи мотора: то есть, он будет хуже тянуть.

Величина теплового зазора определяется производителем для конкретного двигателя: если конструкция мотора предусматривает регулировку клапанов, показатели обычно указываются в руководстве по эксплуатации. — Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

В целом величина теплового зазора, разумеется, очень невелика, это десятые доли миллиметра – примерно 0,1-0,4 мм. При этом ее обычно определяют с помощью набора щупов с шагом в 0,05 мм и менее – то есть, соблюдается точность до сотых. Стоит отметить, что тепловой зазор для впускных и выпускных клапанов различается: как мы уже знаем, выпускные клапаны нагреваются сильнее – а следовательно, сильнее увеличиваются в размерах и требуют большего теплового зазора.

На практике знать конкретные значения теплового зазора нужно только для регулировки – то есть, если вы не занимаетесь ей самостоятельно, эти цифры вам не слишком пригодятся.

Периодичность регулировки клапанов, если она предусмотрена конструкцией мотора, указывается в руководстве по эксплуатации автомобиля. В целом эта процедура выполняется не так часто – обычно это каждые 50-80 тысяч километров. Однако и более частая проверка не повредит – особенно если машина оснащена газобаллонным оборудованием, так как газовое топливо повышает тепловую нагрузку на мотор.

Второй способ узнать о необходимости регулировки клапанов – это характерный звук: стук или цоканье при работе мотора, не проходящее по мере его прогрева.

Ну а если автомобиль приобретен не новым, и его пробег уже немаленький, то регулировка теплового зазора точно не будет лишней – нужно лишь выяснить, предусмотрена ли она конструкцией.

Существует несколько конструктивных вариантов регулировки теплового зазора. К примеру, один из вариантов – это подбор шайб нужной толщины, которые вставляются между толкателем клапана и кулачком распредвала. Для регулировки зазора он сначала замеряется с имеющейся шайбой, а потом шайба при необходимости заменяется на другую, большей или меньшей толщины. Альтернативный вариант при схожей конструкции – подборка не регулировочных шайб нужной толщины, а самих толкателей с необходимыми параметрами.

Еще одна вариация — это регулировка теплового зазора с помощью винтового механизма. В этом случае ничего подбирать не нужно: зазор измеряется щупом и затем при необходимости настраивается вкручиванием или выкручиванием регулировочного болта, который затем фиксируется контргайками — Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Такой метод регулировки мы наглядно показывали в отдельном материале на примере Renault Logan.

Неоднократное уточнение о том, что регулировка клапанов должна быть предусмотрена конструкцией мотора, весьма важно: ведь многие двигатели этой процедуры не требуют. Зависит это от того, оснащен ли мотор гидрокомпенсаторами: это устройства, предназначенные для автоматической регулировки теплового зазора. Они работают за счет масла, поступающего в них из двигателя (поэтому, собственно, и называются « гидро компенсаторами») и полностью исключают необходимость периодической ручной регулировки клапанов. Сами они, конечно же, тоже не вечны – о необходимости их проверки и замены говорит все тот же цокающий стук, не исчезающий вскоре после запуска, а порой даже после прогрева двигателя. Однако главное, что нужно знать в контексте этого материала – это то, что моторам, оснащенным гидрокомпенсаторами, регулировка клапанов не нужна.

Источник

Техническое обслуживание автомобиля и уход за ним

xtehnicheskoe obsluzhivanie avtomobilya.jpg.pagespeed.ic.fXhdNVftTB

Техническое обслуживание автомобиля – это комплекс профилактических мероприятий, предписываемых к исполнению производителем машины. Задача технического обслуживания – не допустить отказов и неисправностей, вероятность появления которых в определённый период достаточно высока. Проще говоря: лучше предупредить заранее, чем потом долго и дорого ремонтировать.

Техническое обслуживание (ТО) обычно включает проведение обязательных операций (например, замену масла в двигателе после пробега 15 тысяч километров) и операций, выявленных в ходе диагностических операций (как с использованием специального оборудования, так и без него – по результатам визуального контроля),

В технической литературе обязательные операции ТО определяются по наименованию сути выполняемых работ:

По результатам проведения контрольно-диагностических операций и принимается решение о выполнении дополнительных работ (долив жидкостей, замена пришедших в негодность элементов и т.д.).

Виды технического обслуживания автомобилей

vidy to.jpg.pagespeed.ce.hYJsEmXQC6

Объём и содержание операций, входящих в техобслуживание автомобиля определяется маркой и моделью машины, а также такими факторами, как текущий пробег, сезонность и достижение определённого срока хранения, если машина в течение этого срока не эксплуатировалась.

Особую важность соблюдения регламента обслуживания придавали в советское время, когда с одной стороны автомобили были не такими совершенными и надёжными, как сейчас, а с другой поддерживалась (особенно в организациях) дисциплина эксплуатации транспортных средств.

Правило осмотра транспортного средства перед выездом в рейс и устранения выявленных недочётов является обязательным для каждого водителя и автомобиля. И такое требование, особенно для грузовых машин и автобусов полностью оправдано: перевозка людей и крупногабаритных грузов требует повышенных мер безопасности.

Классификация видов техобслуживания в России сохранилась с советских времён в «Планово-предупредительной системе технического обслуживания автомобилей» и включает следующие основные позиции:

Производители современных легковых авто несколько видоизменили нумерацию и периодичность ТО:

То есть, для легковых машин виды и нумерация ТО может выглядеть следующим образом:

Регламент технического обслуживания, межсервисные интервалы и содержание операций по каждому виду ТО определяются производителем автомобиля и указываются в сервисной книжке.

Для ТО-0 (ТО-1 по общепринятой классификации) верхний предел пробега составляет, как правило, 2-2,5 тыс. км. Межсервисные интервалы между последующими ТО обычно составляют от 10 до 20 тыс. км.

Ежедневное техническое обслуживание автомобиля

Ежедневное техническое обслуживание – ЕТО (для легковых автомобилей скорее осмотр перед поездкой) предусматривает контрольно-осмотровые операции основных узлов и агрегатов машины, прежде всего тех, которые влияют на безопасность на дороге. При этом проверяют:

Первое техническое обслуживание

Первое техническое обслуживание ТО-1 включает операции, входящие в ежедневное ТО, а также дополнительно следующие работы:

Второе техническое обслуживание

Второе техническое обслуживание – ТО-2 включает операции, входящие в ТО-1, а также дополнительно работы по углублённому диагностированию основных систем, узлов и агрегатов автомобиля.

Помимо большего объёма контрольно-диагностических работ при ТО-2 происходит больше заправочных операций. Кроме замены масла в двигателе в зависимости от пробега или срока хранения меняется:

При заданном пробеге в ТО-2 регламентируются обязательные замены определённых элементов. Для легковых автомобилей – это:

Крепежные работы при ТО-2 также выполняются в большем объёме, чем при ТО-1. К ним относят проверку затяжки крепления:

Из регулировочных работ необходимо отметить регулирование:

Конкретные операции ТО-2 зависят от марки, модели и межсервисного интервала, рекомендуемого конкретным автопроизводителем.

Сезонное техническое обслуживание

Сезонное техническое обслуживание (СО) проводится для подготовки автомобиля к эксплуатации в наступающий зимний или летний сезон.

Дело в том, что резкое изменение температуры окружающей среды сказывается на характеристиках работы деталей, узлов и агрегатов автомобиля: в холодное время года, например, требуются смазочные материалы с меньшей вязкостью, снижается пусковая способность аккумулятора, требуется обеспечить безотказную работу системы отопления, ухудшается сцепление колес с дорожным покрытием.

Обычно автолюбители сезонное ТО, включающее как основную операцию по замене шин, стараются совместить с одним из регламентных номерных ТО (по классификации планово-предупредительной системы ТО-2).

Можно ли сэкономить на техническом обслуживании автомобиля?

xkak sekonomit na

Техобслуживание (кроме ЕТО) – процедура платная и многие автолюбители задаются вопросом: «Можно ли вообще не проходить его, сэкономив, таким образом деньги?». К тому же производители современных автомобилей уверяют, что их качество и надежность растёт, при том, что межсервисные интервалы ТО также увеличиваются.

У этого вопроса две стороны: формальная и фактическая.

Значит, периодическое ТО необходимо не только новым автомобилям, но и, даже в большей степени, автомобилям с пробегом.

Сэкономить на прохождении конкретного ТО не только можно, но и нужно. При этом, важно на каком периоде эксплуатации находится автомобиль: гарантийном (гарантия производителя) или постгарантийном.

Если машина на гарантии, тогда необходимо ознакомиться с соответствующим пунктом сервисной книжки о гарантийных обязательствах производителя. Подавляющее большинство автопроизводителей указывает, что одно из условий поддержания гарантии – прохождения ТО в авторизованных дилерских центрах (известных высокими ценами на свои услуги). И хотя это вопрос более чем спорный, основная масса автолюбителей подчиняется этому требованию.

Экономия при прохождении ТО в гарантийный период возможна за счёт выбора дилерского центра, предлагающего более дешёвые услуги и за счёт закупки материалов для техобслуживания в стороннем магазине (иногда это вдвое дешевле, чем у дилера, но предоставление собственных материалов необходимо заранее согласовать).

Кроме того, следует обратить внимание на перечень операций ТО в предварительной калькуляции. Иногда дилер включает туда работы, не предусмотренные производителем (проверить это просто – по той же сервисной книжке).

Если автомобиль вышел из гарантийного срока, то возможности сэкономить на техническом обслуживании становятся шире. Дело в том, что ряд операций ТО вполне может быть выполнен самостоятельно (особой квалификации здесь не требуется): замена масла и масляного фильтра, воздушного и топливного фильтров, свечей зажигания, тормозных колодок, колёс в сборе.

Более сложные операции (например, замена ремня ГРМ) можно выполнять в независимых автосервисах с хорошей репутацией. Как правило, услуги таких сервисов ощутимо дешевле, чем у официальных дилеров.

Видео: рекомендации эксперта по техобслуживанию

Источник

Контрольно-диагностические и регулировочные работы

Как уже указывалось, эти работы предназначены для оценки тех­нического состояния агрегатов и узлов без их разборки, а также для выявления причин и мест отказов автомобиля. Эти работы прово­дятся при техническом обслуживании автомобиля и по потребности в процессе текущего ремонта

Диагностирование какого-либо агрегата (системы) или автомо­биля в целом проводится с помощью специальных стендов, приспо­соблений и приборов (см. гл. 5). Принцип их действия зависит от характера диагностических признаков, которые присущи объекту контроля (табл. 6.3).

Существует несколько видов диагностирования:

• встроенное диагностирование, при котором информация выво­дится на приборную панель автомобиля. Например, при износе тормозных накладок до предельного состояния загорается сиг­нальная лампочка на панели приборов;

• экспресс-диагностирование, при котором определяется одно из значений технического состояния (исправен — неисправен) без выдачи данных о конкретной причине неисправности;

• поэлементное диагностирование, при котором диагностический прибор подсоединяется к конкретному агрегату (системе) и про­веряются параметры его работы.

На современных автомобилях широко применяется электронное сканирование (опрос) датчиков, регистрирующих параметры работы ряда систем автомобиля. При этом возможны следующие варианты: предварительный опрос систем для выявления ошибок, которые про­являлись в процессе работы и сохранены в «базе данных» автомоби­ля, или сканирование работы агрегатов, узлов и систем автомобиля в формате текущего времени.

Основное внимание обычно уделяется системам автомобиля, обе­спечивающим его дорожную и экологическую безопасность. С по­мощью диагностических приборов (стендов) эти параметры в обяза­тельном порядке проверяются при приемке автомобилей на СТОА и при ежегодном государственном техническом осмотре автомоби­лей.

Регулировочные работы, как правило, являются заключительным этапом процесса диагностирования. Нередко они позволяют восста­новить работоспособность систем и узлов автомобиля без замены деталей. Регулировочными узлами в конструкции автомобиля могут быть эксцентрики в тормозных барабанах, натяжные устройства при­водных ремней и др.

Контроль тяговых и топливно-экономических характеристик автомобиля. Основным оборудованием для такого контроля явля­ется стенд проверки тяговых качеств.

Автомобиль устанавливают на барабаны колесами ведущей оси. Для трехосных автомобилей выпускают специальные стенды с под­держивающими барабанами, на которые устанавливают колеса зад­ней оси.

Контроль производится по средней оси, устанавливаемой на основные беговые барабаны

. image010

image011

Оператор запускает двигатель и на прямой передаче выводит ав­томобиль на заданный постоянный скоростной режим. С пульта стенда дается команда на создание постепенно увеличивающейся на­грузки на беговых барабанах. Для поддержания заданной скорости оператор увеличивает подачу топлива в двигатель до предельной воз­можности. В момент начала падения скорости фиксируется, нагруз­ка, которую преодолел автомобиль. Это и есть его максимальная тя­говая сила на ведущих колесах.

Для оценки топливно-экономических показателей установленный на стенде автомобиль разгоняют на прямой передаче до заданной скорости. На барабанах создают нагрузку, соответствующую реаль­ному сопротивлению на горизонтальной ровной дороге, и с помо­щью штатного или специально подключаемого расходомера опреде­ляют расход топлива.

Скоростные режимы, при которых должны определяться тяговые и топливные показатели, указаны в технических характеристиках ав­томобиля. Нагрузка, соответствующая реальному дорожному сопро­тивлению, определяется расчетом.

На стендах данного типа целесообразно проверять токсичность отработавших газов (ГОСТ Р 51709-2001 и ГОСТ 52033-2003).

Контроль состояния тормозной системы. Для контроля эффек­тивности работы тормозной системы автомобиля наибольшее рас­пространение получили стенды с тормозными барабанами (см. гл. 5, рис. 5.21).

Стенд состоит из двух пар тормозных роликов 3 и 4, соединенных цепной передачей 7, электродвигателя 7, датчика 8 и следящего ро­лика 5.

Чем больше тормозная сила на колесе, тем больший реактивный момент получает корпус электродвигателя, который фиксирует дат­чик 8. При возникновении на колесе автомобиля тормозной силы, превышающей силу сцепления шины с тормозными роликами, ко­лесо блокируется, следящий ролик останавливается, электродвига­тель выключается и на пульте (мониторе) стенда фиксируется тор­мозная сила.

Большинство современных стендов в автоматическом режиме про­водят расчет показателей эффективности торможения, сопоставляя их с нормативными значениями, заложенными в базе данных, и вы­дают результат. Основными показателями являются удельная тормоз­ная сила в целом по автомобилю и относительная разность тормоз- пых сил на колесах каждой оси.

В грузовых автомобилях с многоконтурной пневматической тор­мозной системой кроме общей эффективности торможения прове­ряется правильность и синхронность работы всех контуров. Для это- ю манометры специального диагностического прибора подключают­ся к группе контрольных клапанов пневматической системы автомо- Оиля. При различных фиксированных положениях органов управле­ния тормозами измеряется давление воздуха в каждом контуре и сравнивается с нормативным значением.

Контроль ходовой части и колес автомобиля. Амортизаторы проверяются на вибрационных стендах, в большинстве случаев пред­ставляющих собой специальные площадки под каждое колесо оси авто­мобиля, которые фиксируют нагрузку от каждого колеса (см. гл. 5).

После включения электродвигателей площадки стенда получают высокочастотную вертикальную вибрацию. Нагрузка каждого колеса на площадку становится переменной. Ее характеристика описыва­ется синусоидальной кривой и зависит от работоспособности амор­тизатора. Исправный амортизатор «прижимает» колесо к площадке, и разброс нагрузки становится меньше. Это фиксируется электро­никой стенда и выдается на пульт в виде контрольных цифр.

Другие узлы ходовой части, а также колеса автомобиля проверя­ются на стендах для контроля углов установки колес и стендах для их балансировки (см. гл. 5).

Проездные площадочные стенды для проверки углов установки колес предназначены для экспресс-диагностирования геометрического положения автомобильного колеса по на­личию или отсутствию в пятне контакта боковой силы. Когда углы установки колес не соответствуют требованиям, то в пятне контакта шины возникает боковая сила, которая воздействует на площадку и смещает ее в поперечном направлении. Смещение регистрируется измерительным устройством. Какой угол установки колес нужно ре­гулировать, данные стенды не указывают. При необходимости даль­нейшее обслуживание автомобиля выполняется на стендах, работа­ющих в статическом режиме.

Площадочные стенды устанавливают под одну колею автомобиля, при этом автомобиль должен двигаться по площадке со скоростью примерно 5 км/ч.

Стенды (приборы) для контроля углов установки колес в стати­ческом режиме позволяют измерять углы схождения и развала, углы продольного и поперечного наклона оси поворота колеса (шкворня), соотношения углов поворота колеса.

Контроль состояния рулевого управления. Исправность руле­вого управления в целом проверяют люфтомером, закрепляемом Hi ободе рулевого колеса. При небольших «покачиваниях» рулевого ко­леса специальное приспособление фиксирует моменты начала пово­ротов управляемых колес влево-вправо. Сигналы этих моментов пе­редаются на люфтомер, который определяет значение люфта в руле­вом механизме и приводе колес. Значения люфтов нормирует ГОСТ Р 51709 — 2001 или устанавливает завод-изготовитель.

Наличие износа в сочлененных соединениях рулевого управления и переднего моста проверяется силовым способом. Передние колесе автомобиля устанавливаются на две площадки специального стенде, которые под действием гидропривода попеременно с частотой при* мерно 1 Гц перемещаются в разные стороны, имитируя на колесах движение по неровностям дороги. Сочлененные узлы (шаровые опо­ры, шкворневые соединения, шарниры рулевых тяг, узел посадки сошки руля и др.) проверяют визуально на отсутствие недопустимых перемещений, стуков, скрипов.

При обслуживании рулевых систем, снабженных гидроусилите­лем, дополнительно с помощью специальной аппаратуры проверяют производительность и давление гидравлического насоса.

Контроль технического состояния двигателя. Основным по­казателем технического состояния двигателя является герметичность его надпоршневого пространства, которая оценивается по компрес­сии и утечкам сжатого воздуха.

Компрессия — это давление в надпоршневом пространстве в кон­це такта сжатия. Нормативные значения компрессии нового двига­теля указаны в его технических характеристиках. Примерные значе­ния компрессии бензиновых и дизельных ДВС и основные причины ее снижения приведены в табл. 6.4.

Т а б д и ц а 6.4. Нормативные значения компрессии двигателей

image012

Для измерения компрессии применяются компрессометры и ком- прессографы.

Компрессометры позволяют измерить максимальное значение давления в цилиндре двигателя. При этом информация выводится на стрелочный манометр.

Характер нарастания давления от нуля до максимума определяют с помощью компрессографов, что позволяет примерно оценить тех­ническое состояния сопряженной пары поршень—цилиндр.

Измерения производятся следующим образом.

У бензиновых двигателей выворачивают свечи зажигания. Пооче­редно в свечное отверстие каждого цилиндра вручную с сильным прижимом устанавливают резиновый наконечник прибора. Затем стартером проворачивают коленчатый вал двигателя и считывают показания манометра.

У дизельных двигателей поочередно выворачивают форсунки и нместо них вворачивают наконечник прибора, заводят двигатель и считывают показания.

При низких значениях компрессии можно вычленить одну из воз­можных причин этой неисправности. Для этого в цилиндр, компрес­сия в котором ниже допустимой, через свечное отверстие головки блока или через отверстие под форсунку заливают примерно 20 см 3 моторного масла и проворачивают несколько раз коленчатый вал стартером, после чего проводят повторное измерение компрессии. Если компрессия возросла незначительно («0,05 МПа), то причина в головке блока (негерметичны клапаны, пробита прокладка голов­ки блока). Если компрессия кратковременно возросла на 0,3. 0,5 МПа, то изношено сочленение поршень—цилиндр, которое масло времен­но уплотнило. Однако данный прием подходит только в случаях, если днище поршня ровное и не имеет конструктивной вогнутости, ко­торое не даст маслу растечься по кольцам.

Более информативным является прибор К-272 (рис. 6.5) для из­мерения утечек сжатого воздуха, подаваемого в цилиндр через свеч­ное отверстие.

image013

Его подключают к внешнему источнику сжатого воз­духа с давлением в системе не менее 0,6 МПа. Прибор имеет две ветви шлангов для их поочередного подсоединения к свечному от­верстию. Одна из ветвей включает в себя редуктор, который снижа­ет давление воздуха, подаваемого в цилиндр, до 0,16 МПа.

Измерения производят следующим образом. Поршень проверяе­мого цилиндра при такте сжатия устанавливают в верхнюю мертвую точку. Выворачивают свечу зажигания (форсунку) и в свечное от­верстие устанавливают наконечник ветви прибора с редуктором. Если надпоршневое пространство герметично, то давление в подводящей ветви будет выше 0,11 МПа.

Для определения неисправности, вызвавшей снижение давления ниже 0,11 МПа, через наконечник, ввернутый в свечное отверстие, в цилиндр подают сжатый воздух от внешнего источника (0,6 МПа) и на слух определяют место его утечки. Если воздух выходит во впуск­ной коллектор, то негерметичен впускной клапан этого цилиндра, а если в выпускной коллектор — не герметичен выпускной клапан.

Если воздух выходит в верхний бачек радиатора, негерметични прокладка головки блока цилиндров.

В случае если перечисленные неисправности не обнаружены, при­чиной снижения давления ниже 0,11 МПа является техническое со­стояние ЦПГ (чрезмерный износ цилиндра и поршневых колец, за­легание или поломка поршневых колец, задир зеркала цилиндра) и для восстановления работоспособности двигателя необходимо про­вести текущий ремонт.

В процессе эксплуатации бензинового двигателя наиболее часто изменяются параметры работы системы зажигания, которую диагно­стируют с помощью мотор-тестера.

Датчик прибора устанавливают на высоковольтный провод пер­вой свечи двигателя. При возникновении искры на электродах свечи импульс высокого напряжения создает световую вспышку лампы стробоскопа. Частота вспышек всегда кратна частоте вращения ко­ленчатого вала. Если лампой освещать шкив коленчатого вала, то за счет стробоскопического эффекта он будет казаться неподвижным. На шкиве есть заводская метка в виде риски. Когда эта риска про­ходит мимо специальной контрольной метки на корпусе двигателя, поршень находится в верхней мертвой точке. При наличии у двига­теля угла опережения зажигания риска будет находиться перед кон­трольной меткой.

Прибор имеет реле задержки момента прохождения высоковольт­ного сигнала от провода первой свечи к стробоскопической лампе. Создавая вручную принудительно задержку в прохождении сигнала, можно добиться эффекта, когда при световой вспышке метки на шкиве и в корпусе двигателя совпадут. Продолжительность задержки сигнала на шкале прибора отображается в градусах угла опережения зажигания.

На заднеприводных автомобилях с механической коробкой пере­дач, имеющей передаточное число, равное единице, с помощью стро­боскопической лампы можно проверить, имеет ли место пробуксов­ка сцепления. Для этого автомобиль устанавливают на стенд тягово-мощностных качеств (см. рис. 5.19), разгоняют на прямой передаче и созда­ют на барабанах стенда силу сопротивления вращению колес.

image014

Рис. 5.19. Схема тягового стенда: 1 — устройство для отвода отработавших газов; 2 — беговые барабаны; 3 — пульт управления и индикации; 4 — радиатор

Вспышки стробоскопической лампы направляют на вращающийся карданный вал. Он должен казаться неподвижным. Если создается видимость проворачивания карданного вала, значит, сцепление про­буксовывает.

Другим диагностическим параметром системы зажигания бензи­нового двигателя является вторичное напряжение.

Напряжение, поступающее на свечи зажигания, на мониторе при­бора отображается в виде осциллограммы. По отдельным участкам осциллограммы можно сделать заключение о процессе формирова­нии высокого напряжения. Наиболее характерная зона — это значе­ние пробивного напряжения на электродах свечей зажигания. Чем больше зазор между электродами, тем большее напряжение требуется, чтобы его пробить искрой, и наоборот. Таким образом, сравни­вая значения пробивного напряжения с нормативным значением без выворачивания свечей, можно определить их техническое состоя­ние.

Если со свечи зажигания кратковременно снять высоковольт­ный провод, то зазор между ее электродами условно становится бесконечным. Катушка зажигания, стараясь его пробить, выдает максимальное напряжение. Так тестируется ее работа. Если в ка­тушке зажигания или в высоковольтных проводах происходят утеч­ки напряжения, то в затемненном помещении визуально можно наблюдать световой разряд. Однако при достаточном опыте вы­полнения проверок утечки можно выявить и по характеру осцил­лограммы.

Другие диагностические параметры, например угол замкнутого состояния контактов прерывателя и напряжение АКБ, характеризу­ющие техническое состояние системы зажигания, также можно опре­делить по осциллограммам, отображаемым на мониторе мотор- тестера.

Тепловые работы

К ним относятся медницкие, сварочные, кузнечные работы, для выполнения которых требуется внешний источник теплоты.

Медницкие работы предназначены в основном для выполнения трех видов ремонтных воздействий:

• поверхностного (не встык) сваривания стальных деталей с помо­щью латунного припоя (например, при установке на вал упорно­го кольца или втулки большего диаметра). Оплавления стальных деталей в этом случае не происходит, место сварки получается «эластичным», но больших нагрузок оно выдерживать не может. Оборудованием при этом является газовая горелка и специальный латунный припой;

• ремонта латунных, реже стальных, деталей припоями на основе олова (например, ремонта радиаторов, отопителей);

Источником теплоты в последних двух случаях является паяль­ник.

Сварочные работы предназначены в основном для соединения (ремонта) стальных (реже алюминиевых и чугунных) деталей. Различают газовую и электрическую сварку. Газовая сварка применяется в основном для ремонта тонкостен­ных стальных деталей, например кузова. Недостатком ее является большая поверхность нагрева, что способствует последующей уси­ленной коррозии.

Электросварка производится аппаратами постоянного или пере­менного тока (70. 120 А). Сварка переменным током в зависимости от конструкции аппарата выполняется обычными электродами диа­метром 3. 5 мм или же специальной стальной проволокой диаме­тром 0,8. 1,0 мм.

Сварка постоянным током имеет следующие преимущества: по­зволяет сваривать тонкостенные детали, обеспечивает получение бо­лее ровного сварного шва, ее сварочная дуга более устойчива, мож­но сваривать алюминиевые детали.

К недостаткам относятся большие габаритные размеры, масса, большая стоимость аппарата, отказ выпрямителей при грубых ошиб­ках сварщика.

Основой сварочных работ, кроме профессионализма сварщика, является материал электродов. Специальными электродами можно варить детали из чугуна и алюминия. Например, трещина алюми­ниевой головки блока двигателя устраняется примерно по следующей технологии:

1. Устанавливают длину трещины (максимум 150 мм).

2. По краям трещины сверлят отверстия диаметром 4 мм, чтобы снять местные напряжения.

3. Вручную или фрезой раззенковывают трещину на глубину 3 мм под углом 90°.

4. Нагревают всю головку в специальной печи до 200 «С.

5. Зачищают трещину металлической щеткой до блеска.

6. Сразу же (алюминий окисляется очень быстро) специальным электродом производят сварку постоянным током обратной поляр­ности.

7. Шов зачищают и покрывают герметиком.

К особой группе относятся аппараты для точечной сварки тонко­стенных деталей. За счет большой плотности переменного тока и больших удельных нагрузок в точке соприкосновения деталей созда­стся качественное сварочное пятно диаметром примерно 6 мм. Воз­можность коррозии при этом минимальная, а технологическое рас­положение сварочных точек с интервалом в несколько сантиметров друг от друга обеспечивает соединению достаточную гибкость, что важно для кузовных элементов.

При выборе аппарата точечной сварки особое внимание нужно обращать на комплектующие: электроды (они должны быть из вы­сококачественной меди) и их держатели, чтобы при ремонте иметь доступ к удаленным местам (рис. 6.6).

При ремонте кузовов легковых автомобилей широкое распростра- нсние получили полуавтоматы переменного тока. В них электрод (омедненная стальная проволока диаметром примерно 0,8 мм) и инертный защитный газ специальным механизмом подаются к месту с варки. Разогрев при этом происходит на локальном участке, а до­ступ атмосферного кислорода ограничен, что обеспечивает высокие качество и долговечность сварного шва. Именно такие сварочные аппараты чаще всего используются на СТОА.

image015

Рис. 6.6. Оборудование для электроконтактной точечной сварки: а — сварочные клещи; б — набор сварочных электродов

Кузнечные работы предназначены для изготовления различного вида кронштейнов, стремянок рессор, восстановления погнутости некоторых стальных элементов ходовой части.

Источником теплоты здесь является кузнечный горн.

Особую группу составляют работы по восстановлению работоспо­собности рессор автомобиля (замена сломанного листа рессоры или восстановление его прогиба).

Сломанный лист заменяют новым или изготавливают его из рес­сорной полосы. Инструментом являются молот, кузнечное зубило, наковальня.

Восстановление прогиба выполняется на специальных стендах пяти-, шестикратной прокаткой листа.

Возможны две технологии ручной рихтовки.

1. Рессорный лист устанавливается на вогнутую массивную по­верхность и ударами тяжелого молотка создается требуемый прогиб. Качество работы при этом примерно такое же, как и при стендовом ремонте, но работа имеет повышенную опасность из-за пружинных свойств листа.

2. Наклеп обеспечивается ударами по одной стороне листа молот­ком. При этом достигается требуемый прогиб и повышается износо­стойкость листа. Качество работы при этом самое хорошее.

Кузовные работы

В автосервисных предприятиях кузовные работы подразделяются на жестяницкие, связанные с восстановлением наружных геометри­ческих параметров кузовов автомобилей, и антикоррозионные, обе­спечивающие защиту элементов кузова от негативного воздействия окружающей среды.

Жестяницкие работы. Эксплуатационными повреждениями кузовов легковых автомобилей в основном являются перекосы, вмя­тины, разрывы, местные коррозионные разрушения, ослабления болтовых и заклепочных (рама) соединений. Виды ремонтных воз­действий при этом следующие: удаление коррозии, правка и вы­равнивание деформированных поверхностей, постановка дополни­тельных ремонтных деталей, сварка, восстановление защитных по­крытий.

Коррозию удаляют металлическими щетками, после чего поверх­ность обрабатывают восстановителями после ржавчины. Сварка при­меняется газовая, электродуговая ручная и полуавтоматическая, а также контактная точечная. В отдельных случаях применяется пайка твердыми припоями.

Трещины проваривают, а пробоины и разрывы ремонтируют на­ложением заплат, которые приваривают внахлестку с перекрытием краев на 20. 25 мм.

Небольшие вмятины устраняют правкой в холодном состоянии, а большие — с предварительным подогревом поврежденного места до 600. 650°С. Для этого применяют специальный аппарат посто­янного тока с функцией теплового разогрева. Угольный электрод прижимают к очищенной поверхности металла в центре поврежде­ния и затем сдвигают его по спирали.

Для ручной обработки металла применяются рихтовочные молот­ки и поддержки (наковальни) различной формы под профиль по­врежденного участка. Поверхность молотка или поддержки должна быть рифленой для уменьшения растяжения обрабатываемого ме­талла. Масса поддержки должна быть в 2 — 3 раза больше массы мо­лотка.

Приемы ремонта кузовов кабин грузовых автомобилей и кузовов автобусов аналогичны.

После рихтовки обезжиривают и зачищают выправленное место и наносят быстросохнущую шпатлевку. Если остаются неровности, шпатлевку повторяют. Сильно вдавленные или порванные участки, например на крыльях автомобилей, восстановить правкой, как пра­вило, не удается. В этом случае их вырезают и вваривают в эти места ремонтные детали (панели). Небольшие вмятины, дефекты рихтов­ки, сварочные швы и другие неровности выравнивают специальны­ми заполнителями: термопластическими шпатлевками, эпоксидными составами, мягкими припоями и т.д.

Поврежденные коробчатые детали, которым отсутствует доступ изнутри, обычно засверливают и вытягивают крючками различной формы. Отверстия затем заваривают. Однако технологичнее приме­нять следующий метод: с помощью аппарата точечной сварки к де­формированной поверхности приварить специальные скобы, а затем, воздействуя на рукоятки приспособления, вытянуть повреждение. Скобы затем отламывают, а оставшиеся неровности стачивают.

При ремонтных работах нередко возникает необходимость снятия поврежденной приваренной к кузову детали, например крыла на ав­томобиле ВАЗ. Для этого нужно ликвидировать соединения точечной сварки. На практике зачастую это делают пневмозубилом, что уве­личивает трудоемкость и создает возможность повреждения базовых деталей.

Для вскрытия места точечной сварки следует применять специ­альные сверла с регулируемым вылетом, что позволяет высверлить «точку» верхней детали и не повредить нижнюю деталь.

Восстановление кузовов, поврежденных при аварии, начинается с вытяжки деформированных участков. Для этого применяют стен­ды (см. гл. 5, рис. 5.27), позволяющие направить вектор усилия в требуемую сторону и восстановить первоначальную форму кузова.

Качество жестяницких работ в основном зависит от профессио­нализма исполнителя.

Необходимым элементом при правке кузовов является измери­тельная система, которая крепится на стенд и с помощью специаль­ных устройств (от обычных линеек до лазерных измерителей) и по­зволяет определять координаты базовых точек кузова, которые затем сравниваются с эталонными.

Производители автомобилей дают схему базовых точек нового ку­зова, которые определяют внешние параметры автомобиля, взаим­ное расположение элементов кузова, мест установки агрегатов для соблюдения соосности и технологической размерности. Этих точек 20—30 (см. гл. 5). Если при ремонте базовые точки не возвращены в исходное положение, то резко ухудшается управляемость автомо­биля, первым признаком этого является увод автомобиля от прямо­линейного движения.

Антикоррозионные работы. Новый автомобиль в заводских усло­виях в основном по днищу кузова и колесным аркам покрывают спе­циальными мастиками, препятствующими прямому контакту влаги с металлом. Через 3 — 5 лет покрытие следует обновлять. Для этого на СТОА применяют мастики, которые наносятся с помощью специ­альных установок. Кроме легковых автомобилей, антикоррозионную защиту делают и на автобусах, так как долговечность кузова в основ­ном определяет ресурс всего автобуса.

Некоторые полости автомобиля имеют скрытые полости, в кото­рых конденсируется влага из воздуха (особенно в ситуации зимняя эксплуатация—теплый гараж). Для защиты этих мест скрытые полости покрывают специальной мастикой, для чего сверлят отверстия диаметром примерно 8 мм, которые затем закрывают пластмассовы­ми пробками.

Для выполнения работ по антикоррозионной защите кузовов раз­рабатываются специальные карты с указанием технологических то­чек, в которые следует заливать мастику. Ассортимент мастик очень разнообразен (мовиль, тектил, меркасол и др.). Хорошие показатели имеют мастики, содержащие цинк. На поверхности металла кузова они способны образовывать защитную химическую пленку. Составы с цинком дороже, более эффективны, но их применение целесо­образно только для старых покрытий, где образовался прямой доступ к металлу.

Оборудованием являются распылители (рис. 6.7), подающие ма­стику под давлением 1 МПа и более.

image016 image017
Рис. 6.7. Принципиальная схема установки для воздушного распыления защитного состава в скрытые полости:

а — с нагнетательным бачком; б—с наливным бачком; 1 — манометр; 2 — воздушный шланг; 3 — распылитель КРУ-1; 4 — удлинитель с распыляющей форсункой; 5 — шланг; 6 — нагнетательный бачок; 7— съемный наливной бачок

Окрасочные работы

Лакокрасочное покрытие создается последовательным нанесени­ем на подготовленную поверхность шпатлевки для выравнивания неровностей металла, грунтовки для создания высокой адгезии и шалей различного типа.

Технологический процесс окраски автомобилей состоит из не­скольких основных этапов. Подготовка металлической поверхности заключается в очистке ее от ржавчины или старой краски и выпол­няется механическим способом с помощью химических препара­тов.

Основным условием качественного выполнения окрасочных ра­бот является соблюдение температурного и временного режимов сушки каждого слоя покрытия. Если на слой, например грунтовки, просохшей не на всю глубину, нанести эмаль, то впоследствии в свя­зи с усадкой грунта поверхность эмали получит шагреневый вид.

В автосервисных предприятиях чаще всего проводят подкраши­вание или полную окраску отдельных элементов кузова, для чего предварительно нужно подобрать (создать) эмаль требуемого колера. Для этого с помощью таблиц или компьютерно-программного обе­спечения, в состав которого входит спектрофотомер, определяют объемный состав компонентов, которые при смешивании обеспечат требуемый цвет покрытия, совпадающий с цветом кузова. Получен­ную эмаль в два слоя наносят на металлическую пластинку размером 70 х 150 мм, предварительно покрытую грунтовкой, сушат ее и визу­ально сравнивают с цветом ремонтируемого автомобиля. При необ­ходимости процедуру повторяют, добавляя эмали необходимых цве­тов до получения требуемого оттенка. На крупных предприятиях этим занимается колорист. Качество подбора красок в значительной сте­пени зависит от его опыта.

Сравнение цвета окрашенной пластинки с цветом кузова прово­дится при свете специальных ламп, имитирующих дневное освеще­ние.

Необходимо отметить, что излишнее разбавление эмали раство­рителем, а также более высокое рабочее давление воздуха при распыливании эмали создают более светлые оттенки окраски, и наобо­рот. Расстояние между краскопультом и поверхностью тоже может изменить оттенок окраски.

Спектрофотометры являются дорогостоящим оборудованием. Для автосервисов с малыми объемами окрасочных работ выпускаются специальные каталоги с множеством цветов и оттенков, получаемых из базовых ремонтных эмалей. В этом случае к участку автомобиля, требующему окраски, подбирают подходящий по цвету и оттенку об­разец из каталога, в котором указывается, какие базовые эмали и в каких соотношениях следует смешивать для того, чтобы получить такой оттенок. Процесс дальнейшей подготовки эмали аналогичен рассмотренному.

К особой группе окрасочных эмалей относятся покрытия (бес­цветные лаки), содержащие светоотражающие частицы, которые об­ладают свойством всплывать и располагаться параллельно окраши­ваемой поверхности. Этим создаются цвета металлик, перламутр, хамелеон.

Для создания металлика используются алюминиевые измельчен­ные частицы чешуйчатой формы, имеющие серебристо-серый цвет. Перламутровая окраска достигается введением в эмаль частиц слю­ды, покрытых тончайшей полупрозрачной пленкой оксида алюми­ния. В эмаль хамелеон вводят мелкодисперсные частицы техниче­ского алмаза.

При смешивании бесцветного лака и добавок требуется строгое сообщение их пропорций. В противном случае поверхность получит­ся матовой или без дополнительного цветового эффекта.

Данные покрытия, как правило, наносятся на два слоя исходной эмали.

Грунтовка, эмали и лаки наносятся краскораспылителями. Наи­большее распространение получило распыление под давлением воз­духа 4. 7 бар. Этот традиционный способ не требует специального оборудования, но обладает существенными недостатками.

Для качественного распыления краска должна иметь определен­ную вязкость, что достигается увеличением доли объема раствори­теля. При высыхании эмали растворитель улетучивается, оставляя между частицами пигмента поры, что снижает декоративные и осо­бенно защитные свойства покрытия.

Одним из прогрессивных способов окраски является нанесение эмалей с низким содержанием растворителя, но нагретых до 50. 70 °С. При этом давление воздуха можно снизить до 0,15 МПа, что до 25 % уменьшает расход краски и позволяет наносить более толстые слои эмали без потеков.

Сложностью распространения такого способа окраски является то, что согласно правилам противопожарной защиты подогреватель краски должен быть расположен вне окрасочной камеры. Поэтому краскоподающий шланг оказывается длинным и промывка его за­труднена. Данный способ целесообразно применять при больших объемах работ с использованием эмали одного цвета.

Кроме окраски распылением с использованием сжатого воздуха существует безвоздушная окраска, при которой эмаль подают к рас­пылителю под давлением 10. 30 МПа. Такой способ окраски высо­копроизводительный и используется для окрашивания больших по­верхностей. Кроме того, он позволяет применять высоковязкие краски без разбавления.

В настоящее время появились конструкции пистолетов, работающих при пониженных давлениях воздуха. Они оснащены новыми I и нами насадок-распылителей, позволяющих снизить размеры и ско­рость полета капелек окрасочного материала. При этом есть возмож­ность менять форму факела распыла от линейной до конусной и тюльпанообразной. Выпускаются также краскораспылители с крыль­чаткой в бачке для постоянного перемешивания эмалей типа металлик или перламутр.

Автомобили с большими окрашенными поверхностями сушат в специальных камерах по индивидуальной технологии в зависимости от типа эмали. Для сушки отдельных элементов автомобиля приме­няются передвижные инфракрасные установки. Наметился переход от использования средневолновых излучателей к коротковолновым. Коротковолновое излучение воздействует непосредственно на металл и примерно за 10 мин разогревает его до 140°С, поэтому раствори­тель из нижних слоев покрытия испаряется в первую очередь, и эмаль сохнет изнутри.

Окрасочно-сушильные камеры со всей сопутствующей оснасткой (нагреватели, фильтры, вентиляторы) являются самым дорогостоя­щим оборудованием сервисного предприятия.

Аккумуляторные работы

Работы с аккумуляторными батареями (АКБ) в настоящее время в основном связаны с запуском в эксплуатацию сухозаряженных ак­кумуляторных батарей, с их подзарядкой, проверкой остаточного ре­сурса и проверкой надежности подключения батарей к системе элек­трооборудования автомобиля, с утеплением АКБ в зимнее время, с контролем состояния электролита, если конструкция АКБ позволя­ет это делать.

Запуск АКБ в эксплуатацию. Сухозаряженные АКБ заливают электролитом плотностью на 0,02 г/см 3 меньше рекомендованных значений для конкретных климатической зоны и времени года и вы­держивают в этом состоянии не менее 2 ч, чтобы их пластины хоро­шо пропитались электролитом, а затем обязательно ставят батареи на подзарядку.

Полностью заряженной батарея считается, если ее плотность не изменяется при «кипении» электролита в течение 0,5 ч. Следует иметь в виду, что «кипение» — это выделение водорода, а его смесь с воз­духом взрывоопасна, поэтому к зарядному участку предъявляются особые требования по вентиляции и пожаробезопасности.

Источник

Поделиться с друзьями
AvtoPoisk.top - автоподбор с гарантией
0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии