ротор в мотоцикле это

parking spot 825371 1920

Роторный двигатель

Биография Феликс Ванкель

Феликс Генрих Ванкель (13 августа 1902 года, Лар, Германия — 9 октября 1988 года, Хайдельберг, Германия). Один из авторов идеи роторно-поршневого двигателя внутреннего сгорания, создатель конструкции РПД, производящегося серийно в настоящее время. В наши дни модернизированными «двигателями Ванкеля» оснащаются легковые автомобили Mazda RX-8.

Ранние годы
Феликс Ванкель появился на свет 13 августа 1902 года в немецком городе Лар, земля Баден-Вюртемберг, Германия. Его родителями были Рудольф Ванкель, служащий, и Герти Ванкель, в девичестве Хайдлауфф, домохозяйка.
Феликс рос болезненным, слабым ребенком. Он был почти слеп, страдая сильной близорукостью. Поэтому получил преимущественно домашнее образование. Гимназию он посещал нерегулярно, даже эпизодически. Мальчику трудно было читать и писать.
В 1914 году Рудольф Ванкель был призван в германскую армию и погиб в первый же год войны. Мать Феликса осталась одна с больным ребенком и почти без средств к существованию. В 1915 году она переехала ближе к родственникам в соседний Хайдельберг.
В 1921 году Феликс сдал выпускные экзамены в хайдельбергской гимназии, но поступить в университет не смог. После долгих поисков работы юноше, не имевшему никакой профессии (из-за крайне слабого зрения его не приняли ни в одно училище, дающее рабочую специальность), удалось устроиться в книжное издательство мелким служащим. На протяжение последующих трех лет Феликс Ванкель занимался самообразованием, изучая технические учебники, и копил средства на открытие собственного дела. В 1924 году он уволился из издательства и открыл маленькую автомастерскую, которая стала не столько ремонтным предприятием, сколько частным конструкторским бюро.

Политические взгляды
Этому скромному, тихому, совершенно не воинственному человеку, Феликсу Ванкелю, дважды в жизни довелось побывать в тюрьме. В 1921 году (по другим сведениям, в 1924 году) Ванкель вступил в ряды НСДАП, поверив в идею крайнего национализма. В условиях послевоенного кризиса, когда немцы, проигравшие войну, чувствовали себя униженными и нищими, подобные настроения молодого инженера-самоучки легко понять. Однако, Ванкель был трезвым человеком. И в 1933 году, когда фашисты пришли к власти, он демонстративно покинул ряды партии. И это не прошло для него даром — в том же 1933 году Ванкель, как враг правящего режима, полгода провел в немецкой тюрьме. Но, поскольку он не совершал никаких преступлений, был отпущен на волю. Второй раз Ванкель попал в тюрьму после войны — как человек активно сотрудничавший с нацистским режимом.
С 1936 года Феликс Ванкель работал по заказу компании BMW над разработкой опытных авиадвигателей для Люфтваффе. В 1945 году лаборатория в Линдау, в которой он трудился, была уничтожена американской авиацией. После войны Ванкель был осужден и посажен в тюрьму на два года.
В послевоенные годы Феликс Ванкель избегал какой-либо политической деятельности.

Становление
В том же злосчастном для Ванкеля 1933 году в его жизни произошли важные перемены. Начав в 1924 году разработку роторно-поршневого двигателя, Феликс, выйдя на свободу из тюрьмы, подал заявку на патент. Свой двигатель он назвал «машиной с вращающимися поршнями». Рассмотрение патентной заявки заняло три года. Вместе с патентом в 1936 году Ванкель получил приглашение от компании BMW перебраться в Баварию, в город Линдау, чтобы заняться разработкой золотников и уплотнений для авиационных моторов уже в условиях хорошо оснащенной лаборатории.
Это предложение совпало с женитьбой Ванкеля на Эмме Кирн. В 1936 году супруги переехали в Баварию, забрав с собой все оборудование мастерской. За Ванкелем последовали и немногочисленные сотрудники его компании. Любопытно, что работая по заказу крупного концерна, предприятие Ванкеля, тем не менее, сохраняло независимость.
В 30-е годы Ванкель отошел от разработки РПД, сосредоточившись на авиационных моторах. Но уже к началу 40-х годов он вернулся к старым идеям и построил несколько рабочих прототипов роторно-поршневого двигателя. Главная проблема РПД состояла в том, что Ванкель никак не мог отыскать оптимальную форму ротора и внутренней полости мотора. Экспериментируя с эллипсовидными и овальными формами, он не мог добиться нужной степени уплотнения между ротором и камерой сгорания. Успех пришел только в 50-е годы. Но до этого времени Ванкелю пришлось пережить серьезные испытания.
В 1942 году лаборатория Ванкеля в Линдау была распущена, а сам изобретатель был переведен на работу в конструкторское бюро DVL, занимавшееся разработкой моторов для военной авиации и быстроходных катеров. В последние годы войны Ванкель тесно сотрудничал со специалистами японской компании Hitachi, благодаря чему в Японии было выпущено несколько моделей скоростных истребителей. Судьба довоенных и военных разработок Ванкеля неизвестна. По версии самого изобретателя, вся документация и опытные образцы погибли во время налета на Линдау американской авиации. По другой версии, все оборудование лаборатории Ванкеля было вывезено во Францию по репарациям.

С Вальтером Фройде
Подлинным разработчиком «двигателя Ванкеля» стал вовсе не Феликс Ванкель, а вдохновленный его идеями конструктор компании NSU Вальтер Фройде. Именно он в 1957 году нашел оптимальное сочетание формы ротора и камеры сгорания. Однако, в истории осталось имя Ванкеля — как наиболее последовательного разработчика РПД. Хотя в пятидесятые годы Ванкель работал над другим двигателем, который так и не был запущен в серийное производство.
Толчком к изменению конструкции РПД стали испытания очередного варианта двигателя. Опытный образец мотора для легкого мотоцикла имел рабочий объем всего 50 см3 и выдавал мощность в 14 л.с. Установленный на раму спортивного мотоцикла этот двигатель принес команде NSU мировой рекорд скорости — 193 км/ч.
Однако двигатель оказался ненадежен и капризен. Ванкелю стоило немалых усилий уговорить руководство NSU продолжить финансирование разработок. Тогда-то в команде Ванкеля и появился Вальтер Фройде.
1 февраля 1957 года новый роторно-поршневой двигатель Ванкеля-Фройде был установлен на стенде. В бак была залита смесь метанола и касторового масла. Одна попытка завести мотор. Вторая… Двигатель завелся с третьей попытки. И проработал более 100 часов. Год спустя в свет вышел спортивный автомобиль NSU Spider, оснащенный доработанным двигателем Ванкеля-Фройде. Так началась эпоха РПД.

Успех
В 1960 году финансовое положение Ванкеля настолько упрочилось, что он перестроил лабораторию в Линдау, превратив ее в исследовательский центр. Набрав штат инженеров, он сосредоточился на доработке двигателя Ванкеля-Фройда. При абсолютно разумном подходе к выбору формы ротора и камеры сгорания, соавторам не удалось решить главную проблему РПД — надежного уплотнения ротора, которое препятствовало бы прорыву газов.
Простой в производстве мотор для NSU Spider на практике был недолговечен и неэкономичен — и это при том, что одним из достоинств роторно-поршневого двигателя по идее авторов должна быть именно экономичность. Экспериментируя с легированными сталями, Ванкелю удалось сконструировать достаточно надежный ленточный уплотнитель, работающий не хуже традиционного поршневого кольца. В 1964 году руководству NSU был представлен автомобильный РПД улучшенной конструкции. Он и пошел в серийное производство. Эти двигатели устанавливались на самой удачной модели компании — автомобиле NSU Ro 80.
К 1970 году патент на двигатель Ванкеля приобрели все ведущие автомобильные компании мира. Многие из них взялись за разработку, но до практической реализации дошли лишь считанные единицы.

Последние годы жизни
После того, как в 1969 году компания NSU перешла под контроль концерна Volkswagen, Феликс Ванкель продолжил работу в своем центре в Линдау над совершенствованием РПД по заказам японской компании Toyo Kogyo, позднее сменившей имя на Mazda, и советской компании «ВАЗ». В результате Mazda выпускает двигатели Ванкеля серийно, устанавливая их на суперкары серии RX. А «ВАЗ» ограничился мелкосерийным производством легковых автомобилей для силовых структур СССР, а потом и России. С 1998 года разработкой и производством РПД занимается только Mazda.
Феликс Ванкель работал над конструкцией роторно-поршневого двигателя до самой смерти. Он умер 9 октября 1988 года в Хайдельберге в возрасте 86 лет. Всю жизнь он был женат на одной женщине — Эмме Кирн. Детей у них не было.
Как это ни странно, но Феликс Ванкель никогда в жизни не садился за руль автомобиля. У него было очень слабое зрение. По этой же причине он старался не проводить математических расчетов, полагаясь на интуицию.

Роторно-поршневой двигатель

%D0%A0%D0%9F%D0%94

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая — регулирующая движение ротора и состоящая из пары шестерен; и вторая — преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо — как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД — высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя — невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности — две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики — избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей — ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла — поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего — во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область — камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач. В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80. Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» — пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen, Mazda, ВАЗ. Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80. Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

Любопытные факты

1. Роторно-поршневые двигатели получили распространение среди авиамоделистов. Поскольку в модельном двигателе требования к надежности и экономичности снижены до предела, производство этих моторов оказывается недорогим. В этих двигателях уплотнений ротора либо нет вообще, либо эти уплотнения имеют простейшую конструкцию. Главное достоинство авиамодельного РПД в том, что его можно легко встроить в летающую масштабную модель. В частности, модельные РПД применяются при создании копий реактивных самолетов.
2. Получив патент на РПД в 1936 году Феликс Ванкель стал изобретателем не только двигателя внутреннего сгорания, но еще и роторно-поршневых насоса и компрессора. И эти устройства можно встретить гораздо чаще, чем РПД — на производстве, в ремонтных мастерских, в быту. Например, портативные электрические компрессоры для автомобилистов очень часто устроены по принципу роторно-поршневого насоса.

Источник

[ДВС] Роторно-поршневой двигатель Ванкеля

Всем здрасьте. По многочисленным просьбам в комментах пишу пост про двигатель, стоящий особняком в мире ДВС, так как получил достаточно большое распространение в серийных автомобилях и иногда в мотоциклах, в отличии от других моторов оригинальных конструкций, обходящихся без кривошипно-шатунного механизма.

Первый прототип мотора был показан в 1957 году, после чего патент на РПД был выкуплен 11 мировыми автопроизводителями. Хоть в силу отсутствия подходящих материалов ресурс и показатели РПД оставляли желать лучшего, его конструкция многим показалась очень перспективной, так, в 1960 году, одной из компаний, отвалившей 280 миллионов иен, оказалась Mazda.

Но первым серийным автомобилем был NSU Spider, который вышел в продажу в 1964 году, и под его капотом находился поллитровый мотор Felix, который выдавал 50 лс.

1599073267129621535

159907330911612892

1599073329199284640

1599073332126950791

1599073335127769187

Однако мотору не дали погибнуть японцы, и в 1967 году дебютировала Mazda Cosmo, литровый мотор которой выдавал те-же 110 сил, однако вскоре мощность увеличили до 130 сил.

1599073663150663417

159907366512679771

СССР также вел работы по РПД с 1960 года, и добился больших успехов. В первую очередь было произведено много прототипов мотоциклов с РПД, мне наиболее симпатичен такой «Ижак»))

1599074012125472047

1599074017114694212

А АВТОВАЗ серийно выпускал жигули с РПД, в основном для ГАИ.

1599074660152798324

На этом думаю все, более подробно о технике с РПД можно узнать из общедоступных источников, вернемся к самому РПД.

РПД устроен намного проще любого поршневого двигателя, у него мало деталей, отсутствует механизм ГРМ, нет деталей, совершающих обратно-поступательное движение. Он компактен, сбалансирован, у него высокая литровая мощность.

Основные детали РПД это:

Ротор, имеющий форму треугольника Рёло

159907600515042865

Ротор имеет полую конструкцию с ребрами жесткости, имеет три вида уплотнений:

1. Уплотнения апексов (на вершинах треугольника)

2. Торцевые уплотнения (изолируют торцы сторон треугольника)

3 Радиальные уплотнения ( компрессионные и маслосъемные кольца, уплотняющие область установки шестерни и вкладышей эксцентрикового вала.

Так выглядит набор

1599077268150716439

Наибольшую нагрузку испытывают уплотнения апексов ротора, обычно именно ими ограничивается ресурс мотора до ремонта. Представляют они из себя пластины из прочного сплава, вставляемые в прорези на вершинах ротора, подпружиненные листовыми пружинами. Делать их массивными нельзя, так как на высоких скоростях вращения, центробежная сила слишком сильно прижимает уплотнения к стенкам камеры, ускоряя износ, а слишком тонкие уплотнения не смогут исключить прорыв газов между полостями.

На боковых поверхностях ротора сделаны продолговатые выемки, формирующие камеры сгорания.

1599077957172293763

Также в ротор устанавливается шестерня, которая является синхронизатором вращения ротора и эксцентрикового вала, она входит в зацепление с неподвижной шестерней на боковой крышке корпуса мотора. Передаточное соотношение всегда равно 2:3, благодаря чему за один оборот ротора, эксцентриковый вал делает три оборота, это позволяет этому мотору отлично работать на высоких оборотах, так как при частоте вращения выходного вала в 9000об.мин, ротор крутится со скоростью 3000об.мин.

1599078370199932450

В ротор впрессовывается подшипник скольжения, который взаимодействует с шейкой эксцентрикового вала

1599078451114589000

Таким образом, ротор, обкатывая своей шестерней неподвижную шестерню статора, движется внутри корпуса по эпитрохоиде, а так как у ротора три грани, за один оборот эксцентрикового вала одновременно происходит три такта, и на один оборот эксцентрикового вала приходится один рабочий ход, что свойственно двухтактным поршневым моторам. Благодаря этому РПД выдает весьма высокую литровую мощность, так как сочетает в себе эффективность двухтактного цикла с качественным смесеобразованием четырехтактного цикла.

1599078770167276086

Одной из особенностей РПД является форма камеры сгорания, которая имеет вытянутую линзовидную форму, что вынуждает использовать две свечи зажигания, работающие неодновременно, сначала осуществляется воспламенение рабочей смеси в передней части камеры сгорания, затем происходит дожиг смеси в задней части, для того чтобы не создавать сопротивление вращению в верхней мертвой точке эксцентрикового вала.

Смазка РПД также имеет свои особенности. Маслонасос подает масло под давлением в эксцентриковый вал, где по каналам оно подается к коренным подшипникам скольжения и к подшипникам ротора, выдавливаемое из зазора в подшипнике ротора масло разбрызгиванием смазывает шестерни ротора и статора, одновременно, через масляные форсунки расположенные в эксцентриковом валу, масло подается в полость ротора, омывая и охлаждая его. Форсунки хорошо видно здесь

1599080032171055231

Также отдельным дозирующим насосом масло подается во впуск вместе с топливо-воздушной смесью, для смазки поверхностей статора, как в двухтактных моторах. Это объясняет высокий расход масла на угар и крайнюю требовательность РПД к качеству масла.

В общем-то несоответствие экологическим требованиям и поставило крест на РПД, так как та-же Mazda успела побороть многие болячки этих моторов в последнем его варианте под названием Renesis, который можно встретить в RX8.

Одной из особенностей моторов Renesis стал перенос впускных и выпускных окон на боковые поверхности статора, а впускные окна сделали двойными, что позволило менять фазы газораспределения. На этой картинке хорошо видно двойные впускные окна и полую внутреннюю структуру ротора.

1599080469194374317

Раньше окна располагали на радиальных поверхностях статора, что сильно усложняло жизнь уплотнителям апексов и позволяло выхлопным газам прорываться к впускным окнам через выемку камеры сгорания в роторе.

1599080635190028284

Видно пятно износа, тянущееся от выпускного окна. Также в Renesis сильно усовершенствовали систему уплотнителей, что вкупе с боковым расположением впускных и выпускных окон полностью устранило проблему перепуска газов.

1599080748117251301

Также из особенностей РПД стоит заменить немного сниженные показатели крутящего момента по сравнению с поршневыми моторами, вызванные геометрией передачи усилия на эксцентриковый вал, из-за этого данные моторы выдают высокую мощность только на больших скоростях вращения

1599081213173528343

Видно, что полка момента сдвинута в сторону более высоких оборотов, что несвойственно моторам с турбонаддувом

159908186316165596

Как итог, наверно стоит отметить плюсы и минусы этих моторов.

1. Уравновешенность мотора. РПД из двух секций полностью уравновешен и практически не производит вибраций.

2. Высокая удельная мощность. Вышеприведенный график снят с мотора объемом 1.3 литра, и это далеко не предел.

4. Мало количество составных частей. Мотор прост и обладает небольшой массой вращающихся деталей. что делает его очень отзывчивым.

2. Невысокий ресурс уплотнителей, износ которых влечет перепуск газов между камерами и снижение КПД мотора. На практике ресурс РПД составляет 50-100 000км.

3. Склонность к перегреву из-за специфической формы камеры сгорания, которая имеет очень большую площадь и как следствие большой коэффициент поглощения тепловой энергии при сгорании рабочей смеси.

4. Высокие требования к точности изготовления корпуса и ротора, требующие применения высокотехнологичной оснастки.

Я думаю, что история применения РПД еще не закрыта, инженеры мазды не опускают руки, и характеристики Renesis и Renesis-2 дают надежду еще увидеть эти интересные моторы под капотом серийных автомобилей. Новые материалы позволяют исправить врожденные недостатки, а современные масла позволят вписаться в экологические нормы.

А вообще тяжко впихивать такую тему в один пост, так как про РПД можно рассказывать долго. С ним ставили много интересных экспериментов, и много куда прикручивали, от мотоциклов до вертолетов.

Ну все, надеюсь, было интересно)

Ну и бонусом, интересное видео, где можно посмотреть на работу модельного РПД с прозрачным корпусом

Источник

Поделиться с друзьями
AvtoPoisk.top - автоподбор с гарантией
0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии